

WP 4 – Tectonic control on fluid flow

Task 4.3 – Final Report on geochemical characterization and origin of cold and thermal fluids - Deliverable D4.3 -

WP 4 – Tectonic control on fluid flow

Task 4.3 – Final Report on geochemical characterization and origin of cold and thermal fluids - Deliverable D4.3 -

Version 1.2 Matteo Lelli and Ruth Alfaro Cuevas Villanueva Contact: Matteo Lelli (<u>m.lelli@igg.cnr.it</u>)

Work package WP4 29/03/2019 Website: <u>http://www.gemex-h2020.eu</u>

The GEMex project is supported by the European Union's Horizon 2020 programme for Research and Innovation under grant agreement No 727550

AUTHORS

Part 1 – Los Humeros geothermal system

- Chapter 1: Domenico Liotta (UNIBari), Matteo Lelli (IGG-CNR), Andrea Brogi (UniBari), Jacopo Cabassi (IGG-CNR), Thomas Kretzschmar (CICESE-Ensenada BC), Ruth Alfaro Cuevas Villanueva (UMSNH)
- Chapter 2: Matteo Lelli (IGG-CNR), Thomas Kretzschmar (CICESE-Ensenada BC), Juan Sanchez-Avila (CICESE-Ensenada BC), Yan Rene Ramos (Guanajuato University), Roberto Gomez (Guanajuato University), Marco Doveri (IGG-CNR), Jacopo Cabassi (IGG-CNR), Francesco Norelli (IGG-CNR), Fabrizio Gherardi (IGG-CNR), Gabriella Magro (IGG-CNR), Eleonora Braschi (IGG-CNR), Guia Morelli (IGG-CNR), Pedro Alfaro Cuevas Vilanueva (UMSNH), David Maldonado (Puebla University), Ruth Alfaro Cuevas Villanueva (UMSNH)

Chapter 3: Bernard Sanjuan (BRGM), Frederik Gal (BRGM), Ruth Alfaro Cuevas Villanueva (UMSNH)

- Chapter 4: Egbert Jolie (GFZ, Potsdam), Anna Jenstch (GFZ, Potsdam), Chris Rochelle (BGS-NERC), Helen Taylor-Curran (BGS-NERC), Bob Lister (BGS-NERC)
- Chapter 5: Andrea Orlando (IGG-CNR), Giovanni Ruggeri (IGG-CNR), Daniele Borrini (UniFi)
- Chapter 6: Giordano Montegrossi (IGG-CNR), Maren Brehme (GFZ, Potsdam), Patricia Pinkowski (GFZ, Potsdam)

Chapter 7: Jiri Miller (IFE)

Part 2– Acoculco geothermal system

- Chapter 1: Domenico Liotta (UNIBari), Jacopo Cabassi (IGG-CNR), Andrea Brogi (UniBari), Thomas Kretzschmar (CICESE-Ensenada BC), Ruth Alfaro Cuevas Villanueva (UMSNH)
- Chapter 2: Matteo Lelli (IGG-CNR), Thomas Kretzschmar (CICESE-Ensenada BC), Jacopo Cabassi (IGG-CNR), Juan Sanchez-Avila (CICESE-Ensenada BC), Orlando Vaselli (UniFi-IGG-CNR), Franco Tassi (UniFi-IGG-CNR), Barbara Nisi (IGG-CNR), Belinda Sandoval Rangel (Cicese-Ensenada BC), Romel Gonzales Hernandez (UMSNH), Carlos Ramirez Gaytan (UMSNH), Ruth Alfaro Cuevas Villanueva (UMSNH).

Chapter 3: Matteo Lelli (IGG-CNR), Ruth Alfaro Cuevas (UMSNH) and WP4.3 research group

Task coordinators: Matteo Lelli (Europe, IGG-CNR) – Ruth Alfaro Cuevas Villanueva (Mexico, UMSNH)

TABLE OF CONTENTS¹

PART 1 – LOS HUMEROS GEOTHERMAL SYSTEM

OBJECTIVE AND RESULTS EXECUTIVE SUMMARY

Chapter 1

page 11

page 13

page 8

STATE OF THE ART ON LOS HUMEROS GEOTHERMAL SYSTEM BEFORE GeMex 1.1 Geological and geothermal settings References

Chapter 2

WATER AND GAS GEOCHEMISTRY

2.1 Introduction

2.2 Waters: Sampling, field measurements and laboratory analyses

- 2.2.1 Hydrogeochemical classification and binary plots
- 2.2.2 Saturation Index
- 2.2.3 Strontium isotopes
- 2.2.4 Dissolved carbon dioxide
- 2.2.5 Stable isotopes of water

2.3 Natural gas emissions

- 2.3.1 Sampling and laboratory measurements
- 2.3.2 Chemical classification
- 2.4. Conclusions

Acknowledgements

References

Appendix

Chapter 3

CONVENTIONAL AND UNCONVENTIONAL WATER GEOTHERMOMETERS

3.1 Introduction

- 3.2 *Literature review*
 - 3.2.1 Los Humeros geothermal field
 - 3.2.2 Acoculco geothermal area
 - 3.2.3 Main remarks

¹ The content of this report reflects only the authors' view. The Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains.

page 55

page 16

3.3 Water sampling and analytical results

3.3.1 Water sampling
3.3.2 Analytical results

3.4 Data interpretation and discussion

4.1 Los Humeros high –temperature geothermal waters
3.4.2 Los Humeros and Acoculco thermal waters

3.5 Main conclusions

Acknowledgements
References

Chapter 4

DIFFUSE DEGASSING
4.1 Methods and approach
4.2 Determination of CO₂ efflux
4.3 Determination of alpha radiation
4.4 Mobile open path laser and soil gas survey
4.5 Results
4.6 Discussion
Acknowledgements
References

Chapter 5

LABORATORY EXPERIMENTS FOR THE STUDY OF FLUID/ROCK INTERACTION PROCESSES AT HIGH-TEMPERATURE

5.1 Introduction

5.1.1 Aim of the experiments 5.1.2 Geothermal reservoirs in Los Humeros

5.2. Methodology

5.2.1 Choice of starting materials and their characterization

- 5.2.1.1 Solids
- 5.2.1.2 Liquids
- 5.2.1.3 Gas

5.2.2 The micro-reactor and P-T conditions

5.2.3 Analyses of experimental products

5.3. Results

5.3.1 Experiments using the more primitive andesite (Rugg04)

5.3.2 Experiments using the less primitive andesite (Rugg09)

page 125

page 101

5

5.4. Discussion5.5. ConclusionsAcknowledgementsReferences

Chapter 6

page 150

GEOCHEMICAL MODELING: WELL FLUIDS GEOCHEMICAL DATA ANALYSIS AND MODELING 6.1. Introduction 6.2. Principal Component Analysis (PCA) 6.2.1 PCA 1st component, water-rock interaction 6.2.2 PCA 2nd component, recharge 6.2.3 PCA 3rd component 6.3. Geochemical modeling of well fluids data as function of temperature 6.3.1. Introduction 6.3.2 Well H-15 6.3.3 Well H-16 6.3.4 Well H-17 6.3.5 Well H-19 6.3.6 Well H-22 6.3.7Well H-23 6.3.8 Well H-28 6.3.9 Well H-49 6.3.10 Well H-56 6.3.11 Well H-59 6.3.12 Simultaneous equilibria 6.4. Conclusions

References

Chapter 7

HIGH TEMPERATURE TRACERS

7.1. Introduction

7.2. Methodology, data Analysis and discussion

- 7.2.1 Static Thermal Stability Tests
- 7.2.2 Development of HPLC-ICP-MS method and thermal stability tests at higher temperatures
 - 7.2.2.1 Ion exchange HPLC method
 - 7.2.2.2 Ion pair reverse phase chromatography method
 - 7.2.2.3 Thermal Stability of Tracer A, B and C at higher Temperatures

page 169

7.2.2.4 LC-ICP-MS of thermal stability test solutions 7.2.3 Flooding Experiments 7.2.4 Pre-concentration method for Tracer C 7.3 Conclusions References

PART 2– ACOCULCO GEOTHERMAL SYSTEM

Chapter 1

page 184

page 186

STATE OF THE ART ON LOS HUMEROS GEOTHERMAL SYSTEM BEFORE GeMex

1.1 Geological and geothermal settings References

Chapter 2

WATER AND GAS GEOCHEMISTRY 2.1 Introduction

2.2 Waters: Sampling, field measurements and laboratory analyses
2.2.1 Hydrogeochemical classification and binary plots
2.2.2 Dissolved carbon dioxide
2.3.3 Stable isotopes of water
2.3 Natural gas emissions
2.3.1 Sampling and laboratory measurements
2.3.2 Chemical classification

Chapter 3

DIFFUSE DEGASSING 3.1 Field measurements 3.2 Results and discussion 3.3 Conclusion Acknowledgements References Appendix page 195

OBJECTIVE AND RESULTS

This report regard the activities and results of two years of fieldwork and laboratory analyses performed in Los Humeros (LHGF) and Acoculco (AGF) geothermal fields, in the framework of the WP4.3 of the GeMex project. The report is organized in two parts, the first for Los Humeros and the second for Acoculco. Each part summarize and illustrates the scientific activities and approaches used to fulfil the aim of the Task 4.3. This task is included in the Workpackage 4 (Tectonic control on fluid flow) and it is aimed to the *Geochemical characterization and origin of cold and thermal fluids*. It involve *the sampling and analysis of fluids from boreholes and surface (natural cold and thermal springs, gas manifestations, rivers, etc.) and quantification of degassing processes at the surface (in particular diffuse emissions in selected areas), and HT tracer tests. In order to emphasise the links between the objectives of the project and results obtained, the task description (copied by the contract and highlighted in bold) is presented here as bullet list, providing a brief description of the scientific activities performed.*

• Fluid flow-path: – field maps of natural manifestations (waters and gases) and productive wells (Los Humeros) and comparison with main structure lineaments.

Various research groups involved in the task 4.3 performed sampling trip aimed to collect water and gas samples from natural manifestations, water wells and geothermal wells. Before sampling trips, each partner involved carried out an accurate review of the previous literature, in particular for what concern the geology, tectonics and fluid geochemistry in general. Field maps of sampling points and location of geothermal surface manifestations are included and discussed in Chapters 2, 3 and 4 (part 1 for Los Humeros) and in Chapter 2-part2 for Acoculco. In Chapter 2 (parts 1 and 2) the correlation between the geographical distribution of high values for temperature and dissolved CO₂ measured in some water wells located in Perote plain is discussed and compared with the main structure lineaments. In Chapter 4 the correlation between high values for CO₂ flux diffused from soil (and also radon and thoron concentration) and alignment of main known faults/structure is underlined.

- Hydrology: sampling of selected cold springs located around "target" areas in Los Humeros and Acoculco geothermal sites; isotopic analysis (in particular for 18O, D and Tritium) to provide information regarding the origin of fluids (cold and thermal) and the relationship between cold surface waters and hydrothermal/geothermal water rising from depth.
- Fluid geochemistry: sampling and analysis (chemical and isotope) of cold and thermal springs, fumaroles and soil gases, as well as wells/boreholes in order to identify the origin (stable, radiogenic and radioactive isotope systematics) and

physical-chemical characteristics of reservoir fluids, steam separation/condensation and/or mixing processes and estimate the thermodynamic conditions (P and T) of the equilibration zone present at depth. For example, geothermometric estimations of the reservoir fluids will be done using classical and new auxiliary chemical and isotopic geothermometers

In Chapter 2 (parts 1 and 2), chemical and isotope (stable, radiogenic and radioactive) data for water samples collected from cold and thermal springs, wells and maar lakes located in target areas in Los Humeros and Acoculco, properly selected to provide information regarding the origin of fluids and feeding zones, are discussed. In Chapter 2 (parts 1 and 2) chemical and isotope data regarding fumaroles and dry gas samples are included and discussed. Chemical and isotope analysis for water samples from some cold and thermal springs, cold wells and geothermal wells are included and discussed also in Chapter 3. Geothermometric estimations performed using classical and new auxiliary chemical and isotope geothermal systems. Literature data of Los Humeros geothermal wells are also included and discussed in suitable diagrams in order to obtain information regarding the relationships between cold surface waters and hydrothermal/geothermal fluids.

• Measurements of CO₂, H₂S and CH₄ fluxes diffused from soil using the accumulation chamber and static chamber methods, aimed to the elaboration of isoflux maps. In addition, radon (²²²Rn) and thoron (²²⁰Rn) measurements will be performed. The analysis of further parameters, such as helium and gamma-spectroscopic measurements, will be considered.

These issues regard the Chapter 4 in which isoflux maps for CO_2 fluxes diffused from soil are inserted and discussed, in particular for what concern the relationships between high flux values and alignments of main faults/fractures. The estimation of total output of CO_2 emitted from soil and data regarding radon and thoron concentrations measured in Los Humeros geothermal field are also provided. In Chapter 2 (part 2) the results for measurements of CO_2 fluxes diffused from soil in Acoculco geothermal field are discussed and reported as maps and tables. Estimations of total output are also provided. The results obtained by mobile CO_2 laser detection are also included and discussed.

• Geochemical modelling: Study of water saturation respect to "relevant" mineral phases and modelling of gas-waterrock interaction processes as well as relevant physical processes (e.g. boiling or phase segregation) at depth.

Chapter 6 (part 1) regard the geochemical modelling. Data and results for some Los Humeros geothermal wells are discussed in terms of saturation of several mineral phases, trying to obtain information regarding their scaling potential.

• Development, qualifying and application of high temperature tracers adapted to conditions in Los Humeros and Acoculco (IFE)

Research activities regarding the development of high temperature tracers are part of the Chapter 7 (part 1). The behaviour of the different tracers tested at different temperature conditions and in presence of rock particles are illustrated and discussed.

• Laboratory experiments for the study of fluid/rock interaction processes at high-temperature.

In Chapter 5, the results of fluid–rock interaction experiments performed at different temperature (200-300°C), using two andesitic rocks from Los Humeros and local meteoric fluids, are discussed. Description of mineral assemblages obtained from the experiments is reported, together with the comparison with some phases typically encountered in Los Humeros alteration products.

EXECUTIVE SUMMARY

In order to reach the goals of the task, detailed studies regarding fluid geochemistry were performed, together with laboratory experiments and geochemical modelling on fluid/rock interaction processes at high-temperature and high-T tracer tests. This study represent a novelty for LHGF and AGF, since detailed investigation at regional scale has not been done before. One of the most important novelty regard the role played by the meteoric recharge as a source component of the Los Humeros geothermal fluids (Chapter 2, part 1). Stable isotopes data of geothermal fluids are compatible with physico-chemical process commonly identified in several geothermal wells worldwide (e.g. oxygen-shift due to interaction of meteoric water with reservoir rocks). Mean values of δ^2 H and δ^{18} O for cold water collected in the AGF (excluding the acid waters) are similar to those for LHGF and this feature point out to the regionalization of the meteoric component. Regional recharge cannot be ruled out for LHGF and it could represent an important percentage of the total amount. In Perote plain and toward the south side of the Los Humeros study area, a cluster of "warm" water wells (T up to ≈33°C) aligned in NE-SW direction were identified for the first time. New details regarding chemical and isotopic properties of circulating waters from springs and wells were also acquired in AGF (Chapter 2, part 2), with better understanding of the characterization and evolution of meteoric component at regional scale.

Several kinds of classical and auxiliary geothermometers are applied and developed for thermal/geothermal fluids of both geothermal systems (Chapter 3, part 1). The Na-Li and Na-Cs auxiliary geothermometers, recently defined, give concordant temperature values ($320 \pm 30^{\circ}$ C) with those estimated using the classical Silica-quartz, Na-K and Ca-K geothermometers, and the isotopic $\delta^{18}O_{H2O-SO4}$ geothermometer, for the Los Humeros deep dilute geothermal waters, depleted in Ca, Mg and Sr, and enriched in SiO₂, B and Li, after interaction with andesitic rocks in the reservoir. For numerous thermal waters from both geothermal areas, which are mainly constituted of shallow waters rich in Ca, Mg and Sr, interacting with Mesozoic limestone at temperatures estimated from 60 to 100°C, the Na/K and Na/Li ratios similar to those of the Los Humeros geothermal waters and the relatively high B concentrations suggest small inflows of high-temperature deep waters (close to 300°C), despite the low permeability of these areas.

Detailed study of soil degassing was performed inside the LHGF producing zone and also in AGF (Chapter 2, part 2). In LHFG some areas are characterized by good correlation between known faults and the increasing in CO₂ flux rate and elevated radon and thoron concentrations (Chapter 4, part 1). The presence of very high degassing areas (CO₂ efflux > 300 g m⁻²d⁻¹) at the surface can only be explained by convection along permeable faults/ fractures. In some areas of interest, more detail regarding soil degassing was obtained by mobile laser survey. By carbon isotopic analysis of CO₂ and helium isotopic analysis ³He/⁴He determined in gases released by the soil, it is indicated that faults and fractures in the subsurface have a link to the

deep geothermal reservoir and favor the upflow of hydrothermal fluids. The results of soil degassing study suggest that the most permeable zone in the Los Humeros geothermal field is located in SW area and extends towards the north and northeast. In Acoculco, gas flux was very low and no significant correlations with alignment of regional faults/fracture were evidenced (Chapter 2, part 2). Just in a few sites, evidences for enhanced gas flow associated to the location of natural gas emissions, drilled boreholes and/or with a few specific tectonic features seems to be present.

Several fluid-rock interaction experiments at different temperatures (T) and pressure (P) have been carried out to constrain the physical-chemical processes occurring in the upper reservoir of the LHGF (Chapter 5, part 1). The obtained results indicate that silicification is the most important alteration process. Analytical methods used suggest that in LHGF high mineralized waters likely reacted with andesitic reservoir. In particular, the presence of wairakite in some experimental products could corroborate the hypothesis that infiltrating waters extensively reacted with crossed rocks before reaching the reservoir.

Geochemical modeling was used in several fluid from Los Humeros geothermal wells, investigating the possible mineral phases and their behavior as function of temperature. Possible hydrothermal/methamorphic high temperature secondary minerals were identified, together with a group of secondary minerals with scaling potential. Also, some information regarding the origin of chemicals present in the fluids of Los Humeros geothermal field are obtained.

Seven tracer candidates were first tested for thermal stability in closed quarts vials at temperatures from 150 to 250°C (Chapter 7, part 1). Of the seven compounds tested, one tracer candidate (Tracer C) showed satisfactory properties as geothermal tracer and is expected to be suitable at temperatures up to at least 375°C.

Concluding, the task 4.3 aims were completely reached, with important novelties representing an improvement of our knowledge for: i) identification of feeding zones of geothermal fluids, ii) physico-chemical evolution of hot fluids, iii) characterization of flow-paths linked with geological structures in fractured media. All the milestones were also reached on time.

Chapter 1

STATE OF THE ART ON LOS HUMEROS GEOTHERMAL SYSTEM BEFORE GeMex

1.1 Geological and geothermal settings

Los Humeros geothermal field is located ca. 200 km SE of Mexico City, on the eastern portion of the Plio-Pleistocene Trans-Mexican Volcanic Belt, near the border of this province with the Sierra Madre Oriental province. This geothermal field lies within a wide caldera complex constituted by the Potreros caldera (9-10 km in diameter), where all geothermal wells were drilled, nested within the larger Los Humeros caldera (15 x 21 km). The evolution of the caldera complex was proposed to begin at 460 ky by Ferriz and Mahood (1984), with ignimbrite eruptions, when a highly differentiated magmatic chamber was emplaced beneath the Mezozoic calcareous sequences, interrupted by the construction of several rhyolitic domes and basalticandesite volcanoes. However, recent studies suggest that the onset of the caldera activity occurred last at 164 ky (Carrasco-Nuñez et al., 2018). The basement rocks of this field are granites and schists of Paleozoic age, covered by a thick series of Jurassic and Cretaceous limestones, metamorphosed during the Laramide orogeny and by Oligocene magmatic intrusions (De la Cruz, 1983). Fissural volcanic activity in the area started in the Miocene (≈ 10 Ma), producing the Alseseca andesites that outcrop in the north-eastern part of the Los Humeros caldera. Further volcanic activity did not take place until the Pliocene, when the volcanism associated with the Mexican volcanic belt started, producing the Teziutlan andesites in the area (3.3-1.9 Ma ago; Yañez García and Casique Vásquez, 1980). The LHGF is located 200 km SE of Mexico city, within a complex caldera system active from 0.46 Ma, when ignimbrite eruptions began. The activity ends 20ka ago, reaching the final hydrothermal stage (Ferriz and Mahood, 1984). LHGF represents one of the most important Mexican geothermal system used for electric power generation (about 65MW). Maximum temperature close to 400°C was measured in geothermal wells located in the northern part of the producing area. Excess enthalpy condition (>2400 KJ/Kg; (Gutierrez-Negrin and Izquierdo-Montalvo, 2010) characterize the LHGF since the first stage of fluid extraction (started in 1982: Arellano et al., 2015) and it was enhanced by twenty-nine years of exploitation (started in 1990; Arellano et al., 2003), causing aquifer boiling, phase separation and steam condensation (Barragan et al., 2008; Arellano et al., 2015). Since 1982 to December 2012, about 123 Mt of fluid was extracted (Arellano et al., 2015), including ca. 104 Mt of steam (84.3%) and ca. 19 Mt of liquid (15.7%). Re-injection started in 1995 and in the same period (up to December 2012) about 6.3 Mt of extracted fluid was re-injected in the reservoir (Arellano et al., 2015). This represents a small fraction of the total extracted fluid (5.1%) and the effect of re-injection in LHGF is still debated: for Arellano et al. (2015) it is not clear, whereas Pinti et al. (2017), based on noble gas elemental ratios, suggest the presence of some geothermal wells producing a high fraction of re-injected fluids (62 to 100% of the production fluid). Geothermal fluids are exploited by producing levels, consisting of sequence of fractured blocks characterized by low permeability. Chemical and isotopic composition of geothermal fluids highly depend on depth, enthalpy and flow rate of the wells. For LHGF many geochemical data regard the characterization of geothermal fluids from producing wells and the identification of their important chemical and isotopic temporal evolution due to exploitation (Barragan et al., 1988, 1989, 1991; Truesdell, 1991a,b; Prol-Ledesma 1998; Arellano et al., 2003, 2015). Conversely, very few geochemical data on cold water from springs and wells are used or no data are available for the identification of feeding zones and mean altitude of recharge areas, and to link the meteoric component with geothermal fluid evolution in terms of water-rock interaction and phase separation. Before GeMex, the recharge mechanism of LHGF was still unclear and no detailed study regarding the meteoric component was performed. Therefore, this issue represent one of the most important question that has to be clear in order to fulfil specifics goals of the Task 4.3.

References

Arellano Gomez V.M., García A., Barragán Reyes R.M., Izquierdo G., Aragón A., Nieva D. (2003) - An updated conceptual model of the Los Humeros geotermal reservoir (México). Journal of Volcanology and Geothermal Research, 124, 67-88.

Arellano Gomez V.M., Barragán R.M., Ramírez M., Lopez S., Paredes A., Aragón A., Tovar R. (2015) - The response to exploitation of the Los Humeros (México) geothermal reservoir. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015, 7 p.

Barragan, R.M., Santoyo, E., Nieva, D., Portugal, E., Verma, M.P., 1988. Caracterizacio¤n de yacimientos geotermicos mediante la determinacion de parametros fisico-quimicos. Internal Report IIE/11/2386/I 01/F, Instituto de Investigaciones Electricas, Temixco, Mor., 250 pp.

Barragan, R.M., Cervantes, M., Diaz, R., Garduno, V., Gonzalez, E., Holguin, S., Meza, F., Nieva, D., Oliver, R., Rosas, N., Sampedro, J., 1989. Caracterizacion del fenomeno de corrosion y obturacion en pozos de Los Humeros. Report IIE/11/3753/I for the Comision Federal de Electricidad, Instituto de Investigaciones Electricas, Temixco, Mor., 83 pp.

Barragan, R.M., Nieva, D., Santoyo, E., Gonza¤lez, E., Verma, M., Lo¤pez, J., 1991. Geoquimica de fuidos del campo geotermico de Los Humeros (Me¤xico). Geotermia Rev. Mex. Geoenerg. 7, 23-47.

Barragán-Reyes R.M., Arellano Gomez V.M., Flores Armenta M., Tovar Aguado R. (2008) - Cambios químicos en fluidos de pozos del campo geotérmico de Los Humeros: evidencia de recarga profunda. Geotermia, 21, n°2, 11-20.

Carrasco-Núñez G., Bernal J.P., Dávila P., Jicha B., Giordano G., Hernández J., Navarro M. (2018) - Reapraisal of Los Humeros volcanic complex by new U/Th zircon and 40Ar/39Ar dating: implications for greater geothermal potential. Geochem.Geophys. Geosyst., 19. https://doi.org/10.1002/2017GC007044.

De la Cruz V. (1983) - Estudio geológico a detalle de la zona geotérmica de Los Humeros, Pue. Internal report 10/83, CFE, 51 p.

Ferriz H. and Mahood G. (1984) - Eruption rates and compositional trends at Los Humeros volcanic center. Puebla, México. J. Geophys. Res., 89 (B10), 8511-8524.

Gutiérrez-Negrín L.C.A., Izquierdo-Montalvo G. (2010) - Review and update of the main features of the Los Humeros geothermal field, Mexico. Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25-29 April 2010, 7 p.

Pinti D.L., Castro M.C., Lopez-Hernández A., Han G., Shouakar-Stash O., Hall Ch.M., Ramírez-Montes M. (2017) - Fluid circulation and reservoir conditions of the Los Humeros Geotermal Field (LHCF), México, as revealed by a noble gas survey. Journal of Volcanology and Geothermal Research, 333-334, 104-115.

Prol-Ledesma R.M. (1998) - Pre- and post-exploration variations in hydrothermal activity in Los Humeros geothermal field, Mexico. Journal of Volcanology and Geothermal Research, 83, 313-333.

Truesdell, A.H., 1991a. The origin of high-temperature zones in vapor-dominated geothermal systems. Proc. Sixteenth Workshop on Geotherm. Res. Eng., Stanford Univ., Stanford, CA, pp. 15-20.

Truesdell, A.H., 1991b. Origins of acid £uids in geothermal reservoirs. Geotherm. Res. Counc. Trans. 15, 289-296.

Yáñez García C, Casique Vázquez J. (1980) - Informe geológico del Proyecto geotérmico Los Humeros-Las Derrumbadas, Estados de Puebla y Veracruz, México. Internal CFE report (unpublished).

Chapter 2

WATER AND GAS GEOCHEMISTRY

2.1 Introduction

Specifics tasks of the hydro-geochemical study are related to define chemical and isotopic characteristics of cold and thermal waters and geothermal gases, in order to: i) identify "feeding zones" of geothermal fluids; ii) constrain the equilibrium temperature reached by the fluid at depth; iii) identify the secondary processes (i.e. phase separation, precipitation of mineral phases), which take a part during the evolution of geothermal fluids from reservoir conditions to surface levels.

Before sampling, an accurate study of available hydro-geochemical data, geological and structural maps and also 3D morphological model was performed. This phase allowed to select suitable sampling points for the study in the framework of the task 4.3. In addition, some other important information about sampling points was obtained during various teleconference with CFE's personnel. Once in the field, many new sampling points were discovered and identified, also thanks to CFE support. Two sampling campaigns were performed in LHGF, in particular in June 05th-14th, 2017 and March 16th-28th, 2019. A total of 57 and 87 water samples from cold springs, cold water wells, maar lakes, thermal springs and reinjection wells were collected in June 2017 and March 2018, respectively (see table A1 in appendix). Both sampling trips are performed in collaboration with CICESE (Ensenada, BC), University of Guanajuato, (Guanajuato) and University of Michoacán, Morelia (UMSNH). On March 2018, also BRGM took part in the field trip.

2.2 Waters: Sampling, field measurements and laboratory analyses

Sampling points are shown in the location map of figure 2.2.1, in which waters samples collected in the GeMex project (in green) are reported together with water samples collected during previous works (in red). As showed by the map, the distribution of samples collected during the GeMex project cover an area bigger than the previous investigated surface, and also include different kind of lithology. Particular attention was focused on the selection of "target" areas in which to perform sampling of cold springs, providing information regarding the origin of fluids and relationship between cold surface waters and hydrothermal/geothermal fluids. In particular, springs located on limestone outcrops of the Sierra Madre Oriental and at higher altitude (>3500 m.a.s.l on the Cofre de Perote.) were sampled for the first time. Since no thermal springs are present close to the Los Humeros producing area, during the first field trip samples from Chignahuapan and El Carrizal thermal springs were also collected, in order to obtain significant indication regarding physico-chemical characteristics of hot fluids circulating in different lithology.

Figure 2.2.1 - Location map of water samples collected in LHGF during the GeMex project. Samples collected during previous work are also shown (blue points). Geological map 1:250000 is also reported (Veracruz E14-3, SGM, 2002).

During field trips, Temperature, pH, Electrical Conductivity, Redox Potential, Dissolved Oxygen and in situ determination of total alkalinity were performed using suitable portable instruments (figure 2.2.2a and 2.2.2b). Total alkalinity was measured by acid-base titration, using a micro-dosimeter containing HCl 0.1N and methyl-orange as pH-indicator (figure 2.2.2b). When possible, the flow rate was measured by means of flow-meter or estimated by visual observation or suitable vessel (figure 2.2.3). Each sampling point was documented by photos and sampling cards indicating GPS coordinates, altitude, presence of rock alteration deposition, and/or mineral measured flow rate and results about field determinations/measurements. All parameters measured in the field are inserted in table A1 in appendix. Waters from wells were collected using the installed pumping system and suggested (2x well volume) waiting time to avoid the presence of stagnant water in the pipes (figure 2.2.4).

Figure 2.2.2a - Portable instruments used in the field

Figure 2.2.2b – Micro-dosimeter used for total alkalinity determinations

Figure 2.2.3 – Flow rate measurement

Figure 2.2.4 – Temperature measurement from water well with installed pumping system

Different kind of aliquots were collected, each of one characterized by specific treatment in order to preserve chemicals parameters up to laboratory analysis. In particular:

- n°1 of 125ml Polyethylene (PE) bottle of filtered water (0.45 μm membranes of cellulose acetate) for analysis of Cl, NO₃, SO₄, F, Br;
- n°1 of 50ml PE bottle of un-filtered water for stable water-isotopes analysis (δD ‰, $\delta^{18}O$ ‰, ${}^{87}Sr/{}^{86}Sr$);
- n°1 of 50ml PE bottle of filtered (0.45 μm membranes of cellulose acetate) and acidified (HNO₃ 1:1 superpure) for analysis of Na, K, Ca, Mg, B, Li, Sr, SiO₂;
- n°1 of 100ml PE or glass bottles of acidified (HCl 1:1) for NH₃ analysis;
- n°1 of 250/500 ml PE bottle of un-filtered water for Tritium analysis.

Chemical and isotopic analyses of water samples were carried out in IGG-CNR labs, applying the following analytical techniques:

- Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, B in the filtered-acidified aliquot by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES);
- Cl^{-} , $SO_4^{2^{-}}$, NO_3^{-} and Br in the filtered aliquot by ion chromatography (IC);
- F⁻ in the filtered aliquot by ion-selective electrodes (ISE);
- dissolved SiO₂ in the filtered-acidified aliquot by visible spectrophotometry (UV-VIS);
- the isotope ratios ¹⁸O/¹⁶O D/¹H and ⁸⁷Sr/⁸⁶Sr of water in the filtered aliquot respectively by Mass Spectrometry (LGR) and MC-ICP-MS.
- Tritium was determined through measurement of β- decay events in a liquid scintillation counter.

Short-term analytical precision (repeatability) is better than 2% for ICP-OES analyses, 3-5% for IC and ISE determinations, and close to 5% for visible spectrophotometry. The uncertainties on the δ^{18} O and δ D values are $\pm 0.05\%$ and $\pm 1\%$, respectively.

Results of water analyses are given in appendix (table A2). Charge balance is also reported, and it is lower than 3% for all samples.

2.2.1 Hydrogeochemical classification and binary plots

Chemical classification is one of the most important phases of data elaboration in which significant information regarding water-rock interaction and others physico-chemical processes (e.g. ion-exchange, dilution, mixing, precipitation of mineral phases) can be obtained.

Water chemistry is initially analysed in terms of the relative concentrations of major anions (HCO₃, SO₄, and Cl) and major cations (Na, K, Ca, and Mg), by means of the conventional Langelier-Ludwig (LL) compositional pyramid and relevant cross-section (Langelier and Ludwig, 1942). In the LL compositional diagrams the samples are displayed using a suitable coefficients R_i , calculated starting from the concentrations (C_i) expressed in eq/L:

$$R(Na + K) = 50 * \frac{(C_{Na} + C_K)}{(C_{Na} + C_K + C_{Ca} + C_{Mg})}$$

$$R(Ca + Mg) = 50 * \frac{(C_{Ca} + C_{Mg})}{(C_{Na} + C_K + C_{Ca} + C_{Mg})}$$

$$R(HCO3) = 50 * \frac{(C_{HCO3})}{(C_{HCO3} + C_{Cl} + C_{SO4})}$$

$$R(HCO3 + SO4) = 50 * \frac{(C_{HCO3} + C_{Cl} + C_{SO4})}{(C_{HCO3} + C_{Cl} + C_{SO4})}$$

$$R(HCO3 + Cl) = 50 * \frac{(C_{HCO3} + C_{Cl})}{(C_{HCO3} + C_{Cl} + C_{SO4})}$$

Data of geothermal fluids collected from geothermal wells (previous public data and new data from CFE) are included in the elaboration processes, both as for reference and also to identify possible correlation between surface and deep fluids.

LL diagrams (figures 2.2.5a, b and c) show that most collected waters have HCO₃ and Na or Ca as dominant anion or cations dissolved species, respectively. The distributions of points in the LL classification diagrams allow to identify three main "hydrochemical type": 1) Na-HCO₃, 2) Ca-HCO₃ and 3) Ca-SO₄(HCO₃) waters. The first one is represented by spring waters located at high altitude in the Cofre de Perote volcano (PER13 and PER14) or close to Zaragoza country, in which outcrops of lava rocks (i.e. andesites, trachyandesites, dacites) are extensively present. This hydrochemical type represents the first stage of water-rock interaction between meteoric water and andesites. Calcium bicarbonate waters (Ca-HCO₃) is the most abundant hydrochemical type in the study area and is composed by waters from cold springs and wells located at different altitude. It represents different evolution stage of interaction between

meteoric waters and carbonate rocks (i.e. limestone). The third hydrochemical type (Ca-SO₄-HCO₃) characterize some wells (LH17, LH17bis and PER43) located in the south part of the studied area close to "Laguna de Totolcingo", in which higher SO₄ concentrations are shown. The arid climate conditions characterizing this sector of the study area result in intense evapotranspiration/evaporation. In fact, around the "Laguna de Totolcingo" a widespread mineral salt deposit is present, known as "Tequesquite", which is mainly composed by sodiumcarbonate and sodium-chloride with associated potassium-carbonate, sodium-sulfate and clay (Alcocer and Hammer, 1998). The Ca-SO₄-HCO₃ hydrochemical type waters can reflect the interaction at surface levels of meteoric water with Tequesquite salt incrustation. This process probably involve others samples from wells located close to maar lakes (i.e. LH20, PER38 and PER48), in which Total Ionic Salinity increase (T.I.S.) and Cl concentration is higher than in other samples (see figure 2.2.5b). Chloride concentration is particular high for sample PER51, which is water from local wells characterized by the higher T.I.S. value (c.a. 115 meq/L). Ca-SO₄ chemical composition is showed by sample PER85, a water collected at an altitude close to 3000 m.a.s.l. in the south-west side of the study area: taking into account that no salt incrustations or evaporite formations are present, the interpretation of its physico-chemical characteristic is ambiguous. Water from Alchichica maar (LH18) is characterized by very high T.I.S. value and Na-Cl composition. Of course, its characteristics can be interpreted in terms of interaction with salt deposits/incrustations and/or intense evaporation. Same chemical composition and evolution characterize a sample from a shallow well close to the Pizarro volcano (PER78), even if higher HCO₃ concentration is also present.

In the Perote plain, some wells show temperature ranging from 20°C to 33.1°C (LH50, LH50bis, LH54, LH55, LH61, PER27, PER31, PER54, PER55, PER56, PER57 and PER59). These wells are exploited by farms and have depth ranging from 120 to 180m and flow rate of about 60-70 L/sec. Productive levels are located in rock formations, probably represented by andesites and dacites lavas located at shallow level close to Perote (see stratigraphic section in Carrasco et al., 2017). Their composition is HCO₃-Na-Ca. The thermal spring of Cignahuapan (50.4°C) shows Ca-HCO₃(Cl) chemical composition, suggesting an origin probably due to interaction with limestone, but also with volcanic rocks (Na is the second most abundant dissolved cation).

As well known from literature (Barragan et al., 1988, 1989, 1991; Truesdell, 1991a,b; Prol-Ledesma 1998; Arellano et al., 1998, 2003, 2015), fluids from geothermal wells show variable chemical composition from Na-HCO₃ to Na-Cl. Some geothermal wells (H12, H23, H43, H58) show different Na(+K)/Ca(+Mg) ratio, approaching the line (Na+K) =25 % eq in LL diagrams. Some samples collected in different time from few productive wells (H7, H16, H17, H19, H34, H43) show temporary spike toward higher SO₄ concentrations: it is could be due to partial condensation of excess steam with dissolution of H₂S and subsequently oxidation to sulfate. As for reference, re-injected fluids show Na-SO₄(HCO₃) chemical composition.

Figure 2.2.5a – LLHCO₃ classification diagram

Figure 2.2.5b - LLCl classification diagram

Figure $2.2.5c - LLSO_4$ classification diagram

Since the LL plots of major anions and major cations do not deliver any information on the T.I.S. of the waters of interest, it is advisable to inspect suitable cross-section of LL plots. In fact, the T.I.S. of water samples can be appreciated in these diagrams, by comparing their position with respect to the lines of slope -1, which are iso-T.I.S. lines (see Tonani et al., 1998 for further details). In figures 2.2.6 and 2.2.7, correlation plots HCO₃ vs. Cl+SO₄ and Na vs. Ca+Mg+K are presented, respectively. The two correlation plots show that water from the Alchichica maar lake has the highest T.I.S. (c.a. 320 meg/L), followed by PER51 (114 meg/L) and PER55 (96 meg/L). Among samples collected during this work, T.I.S. varies from 0.7 to 3.4 meq/L for cold spring waters, 0.5 to 114 meq/L for well waters and 5.2 to 9.8 meq/L for surface water of creeks. The salinity of Cignahuapan's thermal spring is c.a. 33 meq/L. Langelier-Ludwig cross sections allow the identification of samples affected by different extent of salt dissolution (e.g. LH17, LH17bis, LH20, PER38, PER43, PER48 and PER78). Although PER51 and PER55 show similar high T.I.S. and temperature values, their chemical compositions are very different. PER51 is Na-Cl water and is located close to the *Tequesquite* deposits/incrustations, whereas PER55 is Na-HCO3 water and is characterized by very high HCO₃ concentration (2028 mg/L). Waters from warm wells in Perote plain show a different alignment compared to wells located in the south part of the study area.

as in figure2.2.5a

Figure 2.2.7 – Correlation plot Na vs. Ca+Mg+K (left) and its magnification for TIS value <60 meq/L. Symbols as in figure 2.2.5a.

Correlation plots contrasting each solute with chloride, which is the mobile (conservative) constituent of reference, are used to investigate (a) mixing effects and (b) the differences/similarities among warm waters from central sector of the Perote plain or area close to Totolcingo lagoon.

The chloride plots of boron (Figure 2.2.8) and lithium (Figure 2.2.9) show that samples from wells located close to Totolcingo lagoon and La Derrumbadas volcano (i.e. LH17, LH17bis, LH20, PER43, PER48, PER51 and PER78) are affected by salt dissolution. Also some warm waters from wells in Perote plain seem to be influenced by the same process (LH54, LH55 and PER55). Boron and lithium contents respectively higher than 1 mg/L and 0.1 mg/L determined in some spring and well waters can be interpreted in terms of interaction with volcanic rock formations and/or deposits composed by their debris. Also in the chloride diagrams of deuterium and oxygen-18 (Figure 2.2.10), samples LH17, LH17bis, PER38, PER43, PER48, LH20, LH54, LH55, PER51, PER55 seem to be influenced by salt dissolution. For these samples, same correlations are obtained also using HCO_3 and SO_4 contents (which represent others two major chemical component of local salt incrustations). In both diagrams, water samples from maar lakes (Alchichica and Quecholac) and shallow well close to Pizarro volcano (PER78) are distributed toward enriched values of stable isotopic composition, owing to the isotopic fractionation during evaporation process. In terms of stable isotopic compositions it is interesting to note the low values for springs located close to the top of the Cofre de Perote volcano (LH35, LH36, LH37, PER13, PER14, PER15 included in group 1 in figures 2.2.10). This is associated to the high altitude of infiltration (close to 4000 m.a.s.l.) and it is in agreement with stable isotopic values for samples collected from wells located at the foothill of the Cofre de Perote volcano (samples in group 2): in fact, lower altitude means less altitude of infiltration or mixing between waters infiltrated at different altitude. Wells located in the south part of the studied area, as PER36, PER37, PER47, PER49, PER53 (group 3 in figures 2.2.10) show similar stable isotopic composition as for group 2, but higher values of chloride. Other wells as LH17, LH17bis, PER38, PER43 and PER48 (also located in the south part), show chloride concentration even greater. For all these samples, a mean altitude of infiltration close to 3000 m.a.s.l. can be hypothesized.

Figure 2.2.8 – Correlation plot B vs. Cl (left) and its magnification (right) for Cl value <500 mg/L. Symbols as in figure 2.2.5a.

in figure 2.2.5a.

Figure 2.2.10 – Correlation plots Cl vs. δD (left) and Cl vs. $\delta^{18}O$ (right). Black arrows are inserted to easily identify the evolution of points due to dissolution of salt and evaporation. Symbols as in figure 2.2.5a.

2.2.2 Saturation Index

The dissolution of generic solid phases can takes place only if the aqueous solution is in under saturation state. Of course, if aqueous solutions are over-saturated with respect to specific solid phase, this latter cannot precipitate. Therefore, in order to acquire information regarding waterrock interaction process and, more in general, secondary processes (e.g. precipitation of mineral phases), it is very important to evaluate the equilibrium degree (i.e. the Saturation Index – SI) of aqueous solution with respect to the mineral phases of interest. This evaluation can be performed by the calculation of SI:

$$S.I. = log\left(\frac{Q_j}{K_j}\right)$$

where Q_j is the ion activity product and K_j is the solubility product.

The aqueous solution is saturated when S.I. = 0. For negative values (S.I.<0) the aqueous solution is under-saturated, whereas positive values (S.I.>0) mean over-saturation.

For samples collected in the framework of the GeMex project, the Solveq numerical code with Soltherm_98 database was used (Spycher and Reed, 1998). The results obtained are showed in correlation diagrams between the S.I. values and the pH. The choice is dictated by the strong dependence on the pH of the S.I., for different groups of minerals of interest. In fact, the dissolution reactions of mineral phases are governed, to a large extent, by the activity of the H + ion. Gypsum and Anhydrite are an exception since their S.I. is not correlated by the pH: in these cases, S.I. is plotted versus SO₄ concentration. To take into account the uncertainties inherent in the calculation, we consider under-saturated the waters with SI <-0.2, saturate those with -0.2 <SI <+0.2 and over-saturated those with SI> +0.2.

Correlation plots Calcite Vs pH and Calcite Vs Temperature (Figures 2.2.11) show that saturation to over-saturation conditions on calcite characterize water from springs located close to limestone outcrops (e.g. LH6, LH7, LH7bis, LH8, LH8bis, LH12) or from wells characterized by higher salinity and/or temperature (e.g. LH54, LH55, LH61, PER51, PER56, PER78). Of course, waters from maar lakes are in over-saturation conditions. The other samples are distributed between S.I. values close to 0 towards negative values (S.I. \approx -3). Cignahuapan's thermal spring show saturation with calcite (S.I. = 0.059). Same considerations can be performed for correlation plots Dolomite Vs pH and Dolomite Vs Temperature (Figures 2.2.12). In general, S.I. values respect to main carbonates (i.e. calcite and dolomite) suggest the significant role played by limestones, in areas close to their outcrops or in areas in which carbonate-rich debris can be accumulated.

Figure 2.2.11 – Correlation plots S.I._{calcite} vs. pH (left) and S.I._{calcite} vs. T (right) for collected water samples. Dashed lines (for values -0.2<S.I.<+0.2) define conditions of saturation respect to mineral phases considered. Symbols as in figure 2.2.5a.

Figure 2.2.12 – Correlation plots S.I._{dolomite} vs. pH (left) and S.I._{dolomite} vs. T (right) for collected water samples. Dashed lines (for values -0.2 < S.I. < +0.2) define conditions of saturation respect to mineral phases considered. Symbols as in figure 2.2.5a.

Collected samples are under-saturated respect to Gypsum and Anhydrite. Just samples from some wells located close to Totolcingo lagoon (LH17, LH17bis and PER43) show SO₄ concentration >400mg/L, approaching S.I. values close to -1. Samples from re-injection wells are shifted from the alignment defined by other samples, since their sulphates contents probably depend from other sources (i.e. oxidation of deep H₂S). Also the SO₄ content for the Alchichica maar lake depend from other process and not from interaction with gypsum(anhydrite-)-rich formations. The observation of figures 2.2.13 suggest the minor role played by SO₄-rich formation, as a source of dissolved sulphate in collected water samples. In fact, evaporite formation are not reported in the study area (see geological maps of Los Humeros, from Carrasco et al., 2017).

Figure $2.2.13 - \text{Correlation plots S.I.}_{gypsum}$ vs. SO₄ (left) and S.I._{anhidrite} vs. SO₄ (right) for collected water samples. Dashed lines (for values -0.2<S.I.<+0.2) define conditions of saturation respect to mineral phases considered. Symbols as in figure 2.2.5a.

Correlation plots amorphous silica vs temperature and chalcedony vs temperature (Figures 2.2.14) show conditions close to saturation respect to $SiO_{2(am)}$ and over-saturation for chalcedony, suggesting that amorphous silica is the most probable SiO_2 polymorph in equilibrium with collected waters. Samples from maar lakes (LH18 and LH22) show lowest values of S.I. for both mineral phases, probably due to joining effect of their high pH values (8.74 and 9.06 respectively for LH22-Quecholac and LH18-Alchichica) and water temperature. The Cignahuapan thermal spring (T = 51°C) show S.I. values among the lowest, since higher temperatures favour the solubility.

Figure 2.2.14 – Correlation plots S.I._{gypsum} vs. SO₄ (left) and S.I._{anhidrite} vs. SO₄ (right) for collected water samples. Dashed lines (for values -0.2 < S.I. < +0.2) define conditions of saturation respect to mineral phases considered. Symbols as in figure 2.2.5a.

2.2.3 Strontium isotopes

Taking into account the presence of different reservoir rocks, which can be involved in waterrock interaction processes, eighteen water samples were selected for Sr isotope (⁸⁷Sr/⁸⁶Sr) analyses. Data are shown in table A3 in appendix. Collected waters show an intermediate ratio between the range of variation determined in andesite and limestone samples collected during the GeMex in outcropping areas. These values correlate well with values for local andesiteryolite rocks (0.70407±0.00001, Verma, 2000) and carbonates (0.70885±0.00001, Veizer et al., 1997), even if the last range is higher than that of limestone collected in the GeMex. Only two cold springs (LH39, LH44) show the lowest signature ratio, in agreement with that of the andesite inside the caldera. In general, we distinguish at least three different groups of waters on the basis of their Sr isotope signatures. In the first group Sr-isotopic ratio ranges from 0.70528 to 0.70553 in the well waters (LH1, LH46, LH50) and in two cold springs (LH32, LH36). In the second group, the Sr isotopes ratio ranges between 0.70599 and 0.7064 in three well waters (LH3, LH54, LH55) and three cold springs (LH6, LH8, LH12). In the third group two well samples (LH17 and LH20) have the highest ratio between 0.70698 and 0.70712. Also, two thermal hot springs sampled outside the caldera have different isotopic ratios. The hot thermal spring (LH28) from El Carrizal, representing the water collected at the lowest altitude, has the highest Sr-isotope ratio reflecting the limestone signature of the geology of the area. The Cignahuapan thermal spring (LH51) shows an intermediate isotopic ratio: in fact it is located in the Sierra Madre Oriental in which limestone, but also andesite rocks outcrop.

In order to understand the origin of dissolved strontium and its evolution, Sr isotope signatures are plotted against concentration of Sr and Cl measured in the same samples. In the correlation plot ⁸⁷Sr/⁸⁶Sr vs Sr (Figure 2.2.15), starting from typical value of local andesite (LH39, LH44 and LH51), a rapid increase in strontium isotopic ratio is reported for Sr concentrations up to

 \approx 300 mg/L. For higher strontium concentration, the gradient of the increment become less and buffering effect appear close to the typical value of local limestone (LH28 – El Carrizal thermal spring). These features characterize also the distribution of points in the correlation plot ⁸⁷Sr/⁸⁶Sr vs Cl (Figure 2.2.16), in which water from cold springs span in a wide range of strontium isotopic ratio. Water from wells are scattered, probably owing to the different origin of chloride. It is worth to mention that strontium isotopic signature for some geothermal wells (H12, H19 and H45) is in the range 0.70853-0.70885 (Pinti et al., 2017), in agreement with the value for carbonates suggested by Veizer et al. (1997).

The distribution of points in figures 2.2.15 and 2.2.16 suggest that: i) sources of strontium in analysed waters are identified in andesite and limestone rocks; ii) water from wells located around LHGF (e.g. in Perote plain) represent mixed terms.

Figure 2.2.15 – Correlation plot ⁸⁷Sr/⁸⁶Sr vs Sr for collected water samples in Los Humeros. Isotope range for andesite and limestone and clay samples collected at Los Humeros during the GeMex project are also reported.

Figure 2.2.16 - Correlation plot ⁸⁷Sr/⁸⁶Sr vs Cl for collected water samples in Los Humeros. Isotope range for andesite and limestone and clay samples collected at Los Humeros during the GeMex project are also reported.

2.2.4 Dissolved carbon dioxide

LHGF are characterized by the presence of high CO₂ concentrations in fluids from geothermal wells (in general $CO_2 > 85\%$, as Total Discharge). The exploitation in Los Humeros enhanced the enthalpy excess conditions for most of geothermal wells, raising the vapour fraction (generally expressed as y coefficient) and favouring the presence of CO₂ in the steam-gas mix extracted. Taking into account these considerations and also the presence of warm wells in Perote plain, first measurements of CO₂ fluxes diffused from soil were performed in selected sites inside the Los Potreros caldera and in Perote plain (Figure 2.2.17). In particular, four areas were investigated: 1) an area corresponding to a crossover of fractures connected to the Maxtaloya master-fault, near the village of Maxtaloya; 2) Xalapazco Crater, characterized by an area with evident hydrothermal alteration; 3) north of Xalapazco, in the prospects of a CFE (Comisión Federal de Electricidad) geothermal plant and of the continuation of the Maxtaloya master-fault; 4) in Perote plain, close to water well PER 55, which is characterized by high water temperature. Grid of points is shown in figure 2.2.17 together with the alignments of main faults/fractures systems. The ϕCO_2 values were measured at 160 sites inside and outside the Los Humeros Caldera by using the Accumulation Chamber (AC) method (Chiodini et al, 1996). Flux data (ϕ CO₂) are reported in table A3 (in appendix), together with soil temperature, atmospheric pressure and maximum, minimum, average, median and standard deviation values for ϕ CO₂. The results indicate that higher values for CO₂ flux (up to 3151 g m⁻² day⁻¹) were only observed near and inside the Xalapazco hydrothermalized area, already known for its gaseous emissions (Peiffer et al., 2018). In other areas, correlation between distribution of high values of CO₂ flux and alignment of faults/fractures lines were not clearly observed, and low CO₂ fluxes were measured (up to $12 \text{ g} \cdot \text{m}^{-2}\text{day}^{-1}$). Total CO₂ output calculated in each selected areas inside the Los Humeros Caldera, i.e. "Xalapaxco" (~5700 m²), "Maxtaloya" (~230000 m²) and "CFE plant" (~253000 m²), was ~0.09, 0.1 and 1.1 t day⁻¹, respectively.

Figure 2.2.17 – Location map of CO₂ flux measurements performed in LHGF. Alignments of main faults/fractures systems are also shown.

 CO_2 fluxes measured in Perote plain were very low and of the same order of magnitude of fluxes measured in soil with grass cover (more or less, up to 0.05 mol/m²day). Considering the presence of some wells characterized by warm water, dissolved CO_2 was also calculated in collected waters samples. Numerical code Solveq with the Soltherm_98 database was used for computation (Spycher and Reed, 1998). Data on dissolved CO_2 is shown in table A4, both as partial pressure (bars) and concentration (in mmol/L and logF_{CO2}). These data are used in a GIS project and it is shown in map of figure 2.2.18.

Figure 2.2.18 – Distribution map of dissolved CO₂ displayed as Log CO₂ fugacity (LogF_{CO2}). This map shows an alignment NE-SW defined by water wells in which dissolved CO₂ reach higher values (red point), but anyway less than 0.1bar. This value is typical for soils, in which the P_{CO2} is direct connected to decomposition of organic substances and soil respiration. Some of these wells include warm wells identified in Perote plain, but also few wells located in the south part of the study area, around Las Derrumbadas Volcano. In Las Derrumbadas, fumarolic activity is reported in literature and associated altered rocks indicates an active geothermal system (Siebe C., 1988). Therefore, local temperature anomaly can be hypothesized and it could explain the rather high temperature (up to 34.8°C for sample PER51) of some water wells located to the southern site. For water wells close to Perote, temperature values higher than 22°C are widely present with maximum value of 33.1°C (PER56).

2.2.5 Stable isotopes

The δ^2 H and δ^{18} O values of H₂O for the water samples collected in the LHGF and its surrounding are shown in the correlation diagram of Figure 2.2.19, together with the worldwide meteoric water line (WMWL - δ^2 H = $8 \cdot \delta^{18}$ O+10, Craig, 1961). As for reference, a meteoric water line (MWL) defined by Perez Quezadas et al. (2015) is also reported, even if it was defined using precipitation samples collected along a transect from the Port of Veracruz to Cofre de Perote. Therefore, it represent a local meteoric water line for the upwind Sierra Madre Oriental area but it is not specific for Los Humeros area. A detailed study regarding the isotopic composition of δ^2 H and δ^{18} O values of H₂O from springs and wells located around the LHGF

was performed for a first time, during the GeMex project. All samples plot preferentially along the WMWL, even if some of them are slightly shifted on the right. This scatter of isotope values could be due to the occurrence of evaporation processes, in particular for wells located in the south part of the study area (e.g. around Pizarro volcano and Totolcingo lagoon). Collected samples span in a wide range of stable isotopic composition, mainly owing to different altitude of infiltration. Samples collected from cold springs and wells located in different areas and at different distance from the LHGF producing area show similar isotopic composition. In addition, δ^2 H and δ^{18} O values of geothermal fluids span in a wide range of variation. In figure 2.2.19, geothermal wells plot on the right of the W.M.W.L., showing an enrichment in δ^{18} O values. Conversely, mean value for $\delta^2 H$ of geothermal fluids is similar to that for collected cold springs. These characteristics, commonly observed in several geothermal fields worldwide, are compatible with oxygen-shift process due to the interaction of meteoric water with reservoir rocks. Other physical processes such as boiling and phase separation (especially after several years of exploitation) contribute to the spreading of the points in the $\delta^2 H$ vs $\delta^{18}O$ plot. Stable isotopes data obtained in this study are in agreement with the hypothesis of regional meteoric component as source of geothermal fluids. Therefore, a regional recharge cannot be excluded for LHGF.

Figure 2.2.19 - Correlation diagram of δ^2 H-H₂O vs. δ^{18} O-H₂O for the water samples collected in the LHGF and its surroundings. The World Meteoric Water Line (WMWL – Craig, 1961) and Meteoric Water Line (MWL) by Perez et al. (2015) are also shown.

2.3 Natural gas emissions

Gas manifestations are reported in literature just in very limited zone inside the producing area of the LHGF and in particular in: Cueva Ahumada (50°C) in Xalapazco crater, Los Humeros (70°C) and Loma Blanca (80°C) (Casique et al., 1982). During sampling trip performed in March 2018, two sites having suitable fumaroles were identified and samples were collected: two aliquots in Loma Blanca (LB1 and LB2) and one in Xalapazco (XA1) (see map in figure 2.3.1). First gas manifestation is located in Loma Blanca at 200-300m north to the Los Humeros country, whereas the second is inside the Xalapazco crater. Loma Blanca is a small altered area in which some weak fumarolic emissions are present with maximum temperature of 92.8°C (boiling temperature at the local altitude \approx 2800 m.a.s.l.). In Xalapazco some gas emissions and steaming ground with maximum temperature of 64.5°C characterize small area of the inner north side of the crater.

Figure 2.3.1 – Location map of natural gas manifestation sample in March 2018. Some geothermal wells are also shown.

2.3.1 Sampling and laboratory analyses

In Loma Blanca, gas sampling was performed, using Giggenbach bottles partially filled with sodium hydroxide solution (\approx 4.5N) and then evacuated to remove atmospheric air (Giggenbach W.F., 1975). With this sampling, steam and gas reactive species (as CO₂ and H₂S) dissolve in NaOH aqueous solution, whereas the others incondensable gases (such as Ar, H₂, O₂, N₂, CH₄,

He) can be accumulated in the headspace of the Giggenbach's bottles. However, since this method is not suitable to analyze carbon monoxide content, other aliquots were collected. In particular, a suitable quartz sampling line was used to perform condensation of the steam, thus separating the condensable fraction from the incondensable ones (Cioni et al., 1988). Incondensable gases can be stored in suitable dry gas bottles, whereas plastic bottles with double cap can be used for condensed steam (Figure 2.3.2).

Figure 2.3.2 - Sampling of Loma Blanca fumaroles, using method by Cioni et al., 1988.

All analyses were performed in IGG-CNR laboratories in Pisa. Incondensable inorganic gases were determined in the headspace of Giggenbach's bottles and in dry gas bottles, using a gaschromatograph (Perkin Elmer Clarus 500), equipped with a 30 m long 5Å molecular sieve capillary column (I.D. 0.53 mm) and a Thermal Conductivity Detector (TCD). This column is able to separate Ar from O₂ at room temperature. Low CH₄ contents (<10 ppmv) were measured using the same gas-chromatograph and capillary column, but employing a Flame Ionization Detector (FID). Carbon dioxide and H₂S in dry gas bottles were determined by means of a gaschromatograph (Carlo Erba 5300) equipped with a packed Chromosorb column and a Thermal Conductivity Detector (TCD). Carbon monoxide in dry gas bottles was determined by means of a gas-chromatograph equipped with a packed molecular sieve (5 Å, 80/100 mesh) column (3 m long, using He as carrier gas) and a high-sensitivity reduced gas detector (HgO; detection limit 0.05 ppmv). The alkaline solution of the Giggenbach's bottles was analyzed for H₂S and CO₂. To measure H₂S, sulfur species were converted to sulfate through oxidation with hydrogen peroxide and sulfate concentration was measured by ion-chromatography. Carbon dioxide was measured on the alkaline solution by titration against HCl 0.1N, using an automatic titrator. Analyses of ¹³C–CO₂ were performed via GC-combustion (GcTrace Thermo Fisher) interface with a Mass Spectrometer (Delta XP plus Thermo-Finnigan) for isotopes ratio. Noble gases were analyzed in the IGG Rare Gas Lab for He, Ne, Kr, Xe abundances, and for their isotopic composition. The samples for Noble Gases analysis were processed on a stainless steel highvacuum line to separate noble gases from reactive gases (Magro et al., 2003). Noble gases are then cryogenically separated each other at selected temperatures. The extraction line is connected to both a magnetic mass spectrometer (MAP 215-50) and a quadrupole mass

spectrometer (Spectralab 200, VG-Micromass). Resolution for ³He was close to 600 AMU for HD-³He at 5% of the peak.

All obtained chemical data have analytical uncertainties $\leq 5\%$ for the main gas components and $\leq 10\%$ for minor and trace gas species. The uncertainties for carbon isotopes is $\pm 0.1\%$, whereas isotopes analyses for noble gases report a reproducibility better than 10% over the analysis period. Chemical data are shown in table A7 (appendix).

2.3.2 Chemical classification

 CO_2 and N_2 are the most abundant gas components in collected gas samples from the LHGF, with concentration of about >81% and 0.6-9%, respectively. Sample LB2 is an exception, since it suffers of air contamination. The triangular diagram of CO₂-N₂-Ar (Figure 2.3.3, left) shows that all samples plot inside the compositional triangle mantle-air-air saturated water (asw), suggesting mixing processes between this three components. The LB2 sample seems to derive their atmospheric components by mixing between air and asw (not from simple addition of air), whereas sample XA1 is shifted towards CO2-rich component. Same path is also showed for most of the gas phases collected from geothermal wells (data from literature, see table A5 in appendix) and no relation with geographical location seems to be evident. In the triangular diagram CH₄-CO₂-N₂ gas samples from Loma Blanca are positioned along the CO₂-N₂ axis, whereas Xalapazco sample (XA1) plots close to the CH4 vertex. Geothermal wells are in general distributed along the CH₄-CO₂ axis, even if some geothermal wells characterized by less deepest permeable horizons (<2000 m.a.s.l.) are shifted toward the N2 vertex. More in general, diagrams in figure 2.3.3 show that fumarole samples LB1 and LB2 have similar chemical composition of geothermal wells (H43 and H59) located in the northern sector of the production area, close to these natural manifestations. Sample XA1 is more similar to geothermal wells H12 and H41, which are located in the south sector of LHGF.

Figure 2.3.3 – Triangular diagrams of CO_2 -N₂-Ar (left) and CH₄-CO₂-N₂ (right) for the gas samples collected in LHGF. Data for geothermal wells are referred to previous works.

2.4 Conclusions

Two sampling campaigns were performed in the LHGF, in particular in June 05th-14th, 2017 and March 16th-28th, 2019. A total of 57 and 87 water samples from cold springs, cold water wells, maar lakes, thermal springs and reinjection wells were collected in June 2017 and March 2018, respectively. Moreover, three gas samples were collected from natural manifestations inside the LHGF producing area. Both sampling trips are performed in collaboration with CICESE (Ensenada, BC), University of Guanajuato, (Guanajuato) and University of Michoacán, Morelia (UMSNH). On March 2018, also BRGM took part in the field trip. Particular attention was focused on the selection of "target" areas in which to perform sampling of cold springs, providing information regarding the origin of fluids and relationship between cold surface waters and hydrothermal/geothermal fluids. In particular, springs located on limestone outcrops of the Sierra Madre Oriental and at higher altitude (>3500 m.a.s.l on the Cofre de Perote.) were sampled for the first time.

Chemical and isotopic characteristics of samples collected from cold springs and wells suggest an origin from meteoric water. Depending on the kind of interacting rocks/formations/deposits, the chemistry of waters can evolve in Na-HCO₃ type, for andesite-rhyolites rocks, to Ca-HCO₃ for limestone. Ca-SO₄(HCO₃) type waters can be attributed to the interaction of meteoric water with salt deposits/incrustations present in particular in the southern part of the study area (around the Pizarro volcano and the Totolcingo lagoon). The effects of salts deposits were also evidenced for water samples collected from wells located more close to the Perote country. The study of saturation index and radiogenic isotopes (i.e. ⁸⁷Sr/⁸⁶Sr) confirm the pivotal role played by limestone and volcanic rocks as the main sources of dissolved Ca, HCO₃ and Na ions. Data on the dissolved CO_2 calculated for some water wells show a distribution of higher values associated to NE-SW direction, according to one of the main alignment of regional faults/fractures. However, calculated P_{CO2} values are less than 0.1 bar, which represent a typical value for the decomposition of organic substances and soil respiration.

Stable isotopic composition of cold waters from springs and wells shows a wide range of variation, mainly owing to different altitude of infiltration. It is interesting to note that samples collected from cold springs and wells located in different areas and at different distance from the LHGF producing area show similar isotopic signature. It suggest that meteoric component is very important at regional scale. Also δ^2 H and δ^{18} O values of the geothermal fluids from producing wells span in a wide range of variation. In general, their mean values for δ^{18} O and δ^2 H are respectively enriched and similar to the mean values for collected cold waters. These characteristics, commonly observed in several geothermal fields worldwide, are compatible with various processes, such as oxygen-shift due to the interaction of meteoric water with reservoir rocks, boiling and phase separation (especially after several years of exploitation). Stable isotopes data obtained in this study support the hypothesis of regional meteoric component, as source of geothermal fluids. Therefore, a regional recharge cannot be excluded for LHGF. Natural gas emissions located inside the LHGF producing area were sampled for the first time and it represent a mixing between deep and surface components. The latter seems to suggest two component, atmospheric air and air saturated water.

Acknowledgements

We want to thank the CFE staffs from Los Humeros and from Morelia for their collaboration, effort and helpful discussions before and during field trips. Also, special thanks to CFE for permission and access to the Los Humeros geothermal producing area. We also are particularly grateful to Rafael Alfaro Garcia and Marcela Sanchez from CFE for their help in collecting fluid samples in the field and to Oscar Lopez Romero and Jesus Hipolito Guzman Sanchez from CFE for their help in the preparation of "Giggenbach bottles" for gas sampling. The Authors also thank Chiara Boschi and Ilaria Baneschi for stable isotope analysis of carbon in Los Humeros fumaroles and Samuele Agostini for strontium isotope analysis. Finally, we are very grateful to Aída López Hernández, scientific coordinator of the GEMEX project, for her support during all phases of scientific activities.

Reference

Alcocer J., Hammer U.T. (1998). Saline lake ecosystems of Mexico. Aquatic Ecosystem Health and Management 1, pp. 291-315.

Arellano, V.M., Garc|¤a, A., Barraga¤n, R.M., Izquierdo, G., Arago¤ n, A., Nieva, D., Portugal, E., Torres, I., 1998. Desarrollo de un modelo ba¤sico actualizado del yacimiento de Los Humeros, Puebla. Report IIE/11/11459/I01/F for the Comisio¤n Federal de Electricidad, Instituto de Investigaciones Ele¤ctricas, Temixco, Mor., 450 pp.

Arellano Gomez V.M., García A., Barragán Reyes R.M., Izquierdo G., Aragón A., Nieva D. (2003). An updated conceptual model of the Los Humeros geotermal reservoir (México). Journal of Volcanology and Geothermal Research, 124, 67-88. Arellano et al., 2015

Barraga¤n, R.M., Santoyo, E., Nieva, D., Portugal, E., Verma, M.P., (1988). Caracterizacioin de yacimientos geotermicos mediante la determinacio¤n de para¤metros fisico-quimicos. Internal Report IIE/11/2386/I 01/F, Instituto de Investigaciones Electricas, Temixco, Mor., 250 pp.

Barragan, R.M., Cervantes, M., Diaz, R., Garduno, V., Gonzalez, E., Holgu|¤n, S., Meza, F., Nieva, D., Oliver, R., Rosas, N., Sampedro, J., (1989). Caracterizacioin del fenomeno de corrosion-obturacion en pozos de Los Humeros. Report IIE/11/3753/I for the Comision Federal de Electricidad, Instituto de Investigaciones Electricas, Temixco, Mor., 83 pp.

Barragan, R.M., Nieva, D., Santoyo, E., Gonzalez, E., Verma, M., Lopez, J., 1991. Geoquimica de fuidos del campo geotermico de Los Humeros (Mexico). Geotermia Rev. Mex. Geoenerg. 7, 23-47.

Barragan R.M., Arellano V.M., Armenta M.F., Aguado R.T., (2008). Cambios quimicos en fluidos de pozos del campo geotermico de Los Humeros: Evidencia de recarga profunda. Geotermia, Vol.21, n°2.

Barragán-Reyes R.M., Arellano Gomez V.M., Ramírez Montes M., Tovar Aguado R. (2010) -Geoquimica isotópica (d18O, dD) inicial de fluidos de pozos del campo geotérmico de Los Humeros, Pue. Geotermia, 23, n°1, 16-25. Casique et al., 1982

Carrasco-Núñez G., Hernández J., De León L., Dávila P., Norini G., Bernal J.P., Jicha B., Navarro M., López P. (2017b) - Geologic map of Los Humeros volcanic complex and geothermal field, eastern Trans-Mexican Volcanic Belt. Terra Digitalis, 1(2), 1-11.Cioni R., Corazza E., Magro G., Guidi M., Marini L. (1988). Reactive and inert gases in low temperature fumaroles (Aeolian Islands, Italy). Rend. Soc. Ita. Min. Petr., vol43: 1003-1011

Ferriz H. and Mahood G. (1984) - Eruption rates and compositional trends at Los Humeros volcanic center. Puebla, México. J. Geophys. Res., 89 (B10), 8511-8524.Giggenbach W.F., 1975.

Giggenbach W.F., (1992). Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth and planetary Science Letters, 113: 495-510.

Gutiérrez-Negrín L.C.A., Izquierdo-Montalvo G. (2010) - Review and update of the main features of the Los Humeros geothermal field, Mexico. Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25-29 April 2010, 7 p. Langelier and Ludwig, 1942

Langmuir, C.H., Vocke Jr., R.D., Hanson, G.N., Hart, S.R., 1978. A general mixing equation with applications to Icelandic basalts. Earth Planet. Sci. Lett. 37, 380–392.

Magro G., Ruggieri G., Gianelli G., Bellani S., Scandiffio G., (2003). Helium isotopes in paleofluids and present-day fluids of the §Larderello geothermal field: Constraints on the heat source. J. Geophy. Res., vol.108(B1). doi:10.1029/2001JB001590, 2003.

Perez J.Q., Silva A.C., Inguaggiato S., Ortega M., Perez J.C., Heilweil V.M. (2015). Meteoric isotopic gradient on the windward side of the Sierra Madre Oriental area, Veracruz-Mexico. Geofisica International, 54(3): 267-276.

Pinti, D.L., Marty, B., 1998. The origin of helium in deep sedimentary aquifers and the problem of dating very old groundwaters. Geol. Soc. Lond. Spec. Publ. 144, 53–68.

Pinti, D.L., Castro, M.C., Shouakar-Stash, O., Tremblay, A., Garduño, V.H., Hall, C.M., Hélie, J.-F., Ghaleb, B., (2013). Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, δ^{18} O, δ D, δ^{13} C and 87 Sr/ 86 Sr. J. Volcanol. Geotherm. Res. 249, 1–11.

Pinti D.L., Castro M.C., Lopez-Hernández A., Han G., Shouakar-Stash O., Hall Ch.M., Ramírez-Montes M. (2017). Fluid circulation and reservoir conditions of the Los Humeros Geotermal Field (LHCF), México, as revealed by a noble gas survey. Journal of Volcanology and Geothermal Research, 333-334, 104-115. Pinti et al., 2019

Prol-Ledesma R.M. (1998). Pre- and post-exploration variations in hydrothermal activity in Los Humeros geothermal field, Mexico. Journal of Volcanology and Geothermal Research, 83, 313-333.Quijano et al., 1991

Sano, Y., Marty, B., 1995. Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119, 265–274.

SGM (2002). Carta Geologico-Minera, Veracruz E14-3 (Veracruz, Puebla y Tlaxcala).

Siebe C., 1988. Major element Geochemistry and tectonic setting of Las Derrumbadas rhyolitic domes, Puebla, Mexico. Chemie der Erde – Geochemistry, vol.48(1): 177-185

Spycher N, Reed M.H. (1998). SOLVEQ: A Computer Program for Computing Aqueous Mineral Gas Equilibria. Department of Geological Sciences, University of Oregon, Eugene, OR., 28 pp.

Tello H.E., Verma M.P., Tovar R.A. (2000). Origin of acidity in the Los Humeros, Mexico, geothermal reservoir. Proceedings World Geothermal Congress, Japan, May 28-June 10.

Tonani F., Nagao K., Moore J., Natale G., Sperry T. (1998) Water and gas geochemistry of the Cove-Fort Sulphurdale geothermal system. Proceedings, Twenty-Third Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 26-28, 1998.

Truesdell, A.H., 1991a. The origin of high-temperature zones in vapor-dominated geothermal systems. Proc. Sixteenth Workshop on Geotherm. Res. Eng., Stanford Univ., Stanford, CA, pp. 15-20.

Truesdell, A.H., 1991b. Origins of acid £uids in geothermal reservoirs. Geotherm. Res. Counc. Trans. 15, 289^296.Veizer, J., Buhl, D., Diener, A., Ebneth, S., Podlaha, O.G., Bruckschen, P., Jasper, T., Korte, C., Schaaf, M., Ala, D., Azmy, K., 1997. Strontium isotope stratigraphy: potential resolution and event correlation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 132, 65– 77.

Verma, S.P., 2000. Geochemical evidence for a lithospheric source for magmas from Los Humeros caldera, Puebla, Mexico. Chem. Geol. 164, 35–60.

APPENDIX

Code	Name	Date (dd/mm/vv)	Type	X (m)	Y (m)	Alt. (m.a.s.l.)	Depth (m)	Flow rate (L/min.)	T (°C)	pН	O2 diss. (mg/L) E.C. (µS/cm)
		,,,,,,,,,,	- 77			Sam	pling 2017		- 1 -1	P		/ (- -//
LH1	hualco - Sar	05/06/2107	Well	653278	2157817	2385	80	≈1200	20.7	7.45	5.24	555
LH2	iguel - Barr	05/06/2107	Well	650030	2157135	2355	n.k.	?	18.4	6.82	6.35	356
LH3	Puchintoc	05/06/2107	Well	647263	2165018	2416	n.k.	?	20	7.02	2.18	561
1H4	uitzitzilapa	06/06/2017	Well	648787	2180106	2506	n k	?	14	6.81	5 54	250
1815	arczie Fi Sal	07/07/2017	Well	651017	2187878	2220	n k	300	18.2	7.26	61	263
1817	la del Carm	08/06/2017	Well	653/03	2131005	2220	70	900	18.4	6.73	1.65	1871
1420	hichicuput	08/06/2017	Well	669639	21///050	2200	69	18	20.4	7.19	1.00	1608
1421	Valtanaa	08/06/2017	Well	673506	2144050	2001	00	10	17.4	7.10	1.5	1090
LHZI	Xaitepec	08/06/2017	well	6/2506	2143906	2350	80	65	17.4	7.71	5.39	564
LH46	14-Los Hume	13/06/2017	Well	658264	21/5116	2761	350	285	23.3	7.05	3.07	317
LH50	cho Los Sau	13/06/2017	Well	680858	2173556	2400	180	3000	20.1	7.31	3.57	593
LH54	ardin Dorac	14/06/2017	Well	674864	2163728	2379	120	≈4000	23.5	7.5	n.m.	1755
LH55	ardin Dorac	14/06/2017	Well	675821	2163313	2371	150	≈4000	25.1	7.25	n.m.	1871
LH5	uitzitzilapa	06/06/2017	Spring	648880	2180326	2509	-	8.2	14.2	7.04	5.81	148
LH6	pan - San N	06/06/2017	Spring	645867	2179182	2433	-	9.5	16.8	7.04	6	602
LH7	La Olimpica	06/06/2017	Spring	644203	2179731	2365		10	14.6	7.04	4.45	503
LH7 bis	La Olimpica	06/06/2017	Spring	644234	2179774	2360	-	-	-	-	-	-
LH8	La Olimpica	06/06/2017	Spring	644459	2179515	2437	-	not measurable	15.3	6.94	1.56	554
LH9	Buena Vista	06/06/2017	Spring	633513	2183084	2392	-	0.9	17.9	6.31	2.08	201
LH12	Sesder	07/06/2017	Spring	640647	2178480	2205	-	3.6	20	7.11	3.1	603
LH13	Sesder	07/06/2017	Spring	640643	2178488	2205	-	0.15	20	7.48	4.26	412
LH14	Acuaco	07/07/2017	Spring	649898	2185463	2286	-	12	16.7	6.81	8.02	192.3
1 H10	n Luis Atexa	08/06/2017	Spring	662709	21/0536	2/38		not measurable	-	0.01	0.02	152.0
1422	del Nacimi	09/06/2017	Spring	685242	2140550	2400		0.52	10.9	7	10.02	20
1424	del Nacimi	09/06/2017	Spring	695050	2141005	2998	-	1.0	10.0	6.95	6.42	50.1
LHZ4		09/06/2017	spring	0000009	2141/22	2977		1.0	10.9	0.65	0.42	59.1
LH25	Oczotla	09/06/201/	Spring	683402	2141025	2770	•	not measurable	12	6.78	/	119.5
LH26	issima Trin	09/06/2017	Spring	684493	2134626	2907	-	0.3	12.4	7.57	8.91	43.2
LH27	issima Trin	09/06/2017	Spring	684558	2134658	2906	-	≈200_estimated	12.2	7.15	8.9	63
LH30	Mazapa	10/06/2017	Spring	682513	2179254	2239	-	7.5	20	7.23	3.4	96.1
LH31	Mazapa2	10/06/2017	Spring	682812	2178692	2280		1.4	14.9	7.06	5.59	154.5
Code	Name	Date (dd/mm/yy)	Туре	X (m)	Y (m)	Alt. (m.a.s.l.)	Depth (m)	Flow rate (L/min.)	T (°C)	pН	O2 diss. (mg/L) E.C. (µS/cm)
LH32	Mazapa3	10/06/2017	Spring	682801	2178708	2280	-	30	15	6.69	7.38	144.5
LH33	zingo-El Tes	10/06/2017	Spring	683257	2182923	2095	-	55	15.6	6.71	5.48	104.1
LH34	Escobillo	11/06/2017	Spring	689388	2158492	3075	-	190	9.3	8	6.8	27.2
LH35	o-Rancho Ni	11/06/2017	Spring	689961	2160999	3020	-	80	11.9	6.44	6.6	84.1
LH36	El Conejo	11/06/2017										
LH37	Dos Aguas		Spring	693563	2159689	3406	-	5	9.5	6.79	9.34	63.8
LH38		11/06/2017	Spring Spring	693563 691046	2159689 2161084	3406 3098	-	5 80-100	9.5 11.7	6.79 6.53	9.34 6.6	63.8 98
1839	icaco-Ahuca	11/06/2017 11/06/2017	Spring Spring Spring	693563 691046 678612	2159689 2161084 2189214	3406 3098 1950	-	5 80-100 6.5	9.5 11.7 16	6.79 6.53 7.14	9.34 6.6 6.37	63.8 98 113
L 10 2	icaco-Ahuca icaco-Ahuca	11/06/2017 11/06/2017 11/06/2017	Spring Spring Spring Spring	693563 691046 678612 678606	2159689 2161084 2189214 2189267	3406 3098 1950 1937	- - -	5 80-100 6.5 18	9.5 11.7 16 18	6.79 6.53 7.14 7.6	9.34 6.6 6.37 6.92	63.8 98 113 122
LH40	icaco-Ahuci icaco-Ahuci Xiutetelco	11/06/2017 11/06/2017 11/06/2017 11/06/2017	Spring Spring Spring Spring Spring	693563 691046 678612 678606 675386	2159689 2161084 2189214 2189267 2189176	3406 3098 1950 1937 1933	- - - -	5 80-100 6.5 18 ≈1000	9.5 11.7 16 18 15.9	6.79 6.53 7.14 7.6 7.85	9.34 6.6 6.37 6.92 6.5	63.8 98 113 122 81.2
LH40	icaco-Ahuci icaco-Ahuci Xiutetelco anta Rosali	11/06/2017 11/06/2017 11/06/2017 11/06/2017 11/06/2017	Spring Spring Spring Spring Spring Spring	693563 691046 678612 678606 675386 676367	2159689 2161084 2189214 2189267 2189176 2190668	3406 3098 1950 1937 1933 1876	- - - - -	5 80-100 6.5 18 ≈1000	9.5 11.7 16 18 15.9 15.5	6.79 6.53 7.14 7.6 7.85 7.07	9.34 6.6 6.37 6.92 6.5 8.31	63.8 98 113 122 81.2 83.7
LH40 LH41 LH42	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali	11/06/2017 11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017	Spring Spring Spring Spring Spring Spring Spring	693563 691046 678612 678606 675386 676367 674704	2159689 2161084 2189214 2189267 2189176 2190668 2189494	3406 3098 1950 1937 1933 1876 1939	- - - - - -	5 80-100 6.5 18 ≈1000 - 90	9.5 11.7 16 18 15.9 15.5 17	6.79 6.53 7.14 7.6 7.85 7.07 6.64	9.34 6.6 6.37 6.92 6.5 8.31 6.75	63.8 98 113 122 81.2 83.7 205
LH40 LH41 LH42	icaco-Ahuci icaco-Ahuci Xiutetelco anta Rosali La Quinta	11/06/2017 11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017	Spring Spring Spring Spring Spring Spring Spring	693563 691046 678612 678606 675386 676367 674704 674627	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327	3406 3098 1950 1937 1933 1876 1939	- - - - - - -	5 80-100 6.5 18 ≈1000 - 90 12	9.5 11.7 16 18 15.9 15.5 17 16.4	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18	63.8 98 113 122 81.2 83.7 205 187
LH40 LH41 LH42 LH43	icaco-Ahuci icaco-Ahuci Xiutetelco anta Rosali La Quinta El Progreso	11/06/2017 11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring	693563 691046 678612 678606 675386 676367 674704 674627 678428	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327 2183782	3406 3098 1950 1937 1933 1876 1939 1965 2516	- - - - - - - - - - -	5 80-100 6.5 18 ×1000 - 90 12 22	9.5 11.7 16 18 15.9 15.5 17 16.4	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.00	63.8 98 113 122 81.2 83.7 205 187
LH40 LH41 LH42 LH43 LH44	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli	11/06/2017 11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring	693563 691046 678612 678606 675386 676367 674704 674627 673429	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327 2182780	3406 3098 1950 1937 1933 1876 1939 1965 2516	- - - - - - - - -	5 80-100 6.5 18 ×1000 - 90 12 32 32	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99	63.8 98 113 122 81.2 83.7 205 187 54.2
LH40 LH41 LH42 LH43 LH44 LH44bis	icaco-Ahuci icaco-Ahuci Xiutetelco anta Rosali La Quinta El Progreso Guaje-A Toli Guaje-A Toli	11/06/2017 11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring	693563 691046 678612 678606 675386 676367 674704 674627 673429 673429	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327 2182780 2182765	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520	- - - - - - - - - -	5 80-100 6.5 18 ≈1000 - 90 12 32 32 n.m. (very low)	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 -	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m.	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m.	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m.
LH40 LH41 LH42 LH43 LH44 LH44bis LH45	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli Suaje-A Toli Mixquiapar	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring	693563 691046 678612 678606 675386 676367 674704 674627 673429 673429 673429	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327 2182780 2182765 2179539	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292	- - - - - - - - - - - - - -	5 80-100 6.5 18 ≈1000 - 90 12 32 n.m.(very low) 12 12	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 - 16.8	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8
LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH49	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli Suaje-A Toli Mixquiapar Chagchar	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring	693563 691046 678612 678606 675386 676367 674704 674627 673429 673429 673429 679821 66352	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327 2182780 2182765 2179539 2188048	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389		5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 - 16.8 14	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3
LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH49 LH53	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli Guaje-A Toli Mixquiapar Chagchar ;ignahuapa	11/06/2017 11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 14/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring	693563 691046 678612 678606 675386 676367 674704 674627 673429 673429 673429 679821 663532 602311	2159689 2161084 2189214 2189267 2189267 2189267 2190668 2189494 2189327 2182780 2182765 2179539 2188048 2193963	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263	- - - - - - - - - - - - - - - - - - -	5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 12 ≈1000 >10000	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 16.8 14 14.1 9.5	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m.	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177
LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH49 LH53 LH10	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli Suaje-A Toli Mixquiapar Chagchar Xignahuapa Buena Vista	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 14/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek	693563 691046 678612 678606 675386 675386 67637 674704 674627 673429 673429 673429 673429 673821 663532 602311 632199	2159689 2161084 2189214 2189267 2189176 21890668 2189327 21829327 2182765 2182765 2179539 2188048 2193963 2183156	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136		5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000 >10000 12	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 16.8 14 19.5 20.7	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18 7.37	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322
LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH49 LH53 LH10 LH11	icaco-Ahuci icaco-Ahuci Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toll Mixquiapar Chagchar ignahuapai Buena Vista Sesder	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 14/06/2017 06/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek	693563 691046 678612 678606 675386 675386 674004 674027 673429 673429 673429 673429 673429 673211 63532 602311 632199 640766	2159689 2161084 2189214 2189267 2189176 21890668 2189494 2189327 2182780 2182785 2179539 2182785 2179539 2188048 2193963 2183156 2178104	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165		5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000 >10000 12 0.2	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 16.8 14 19.5 20.7 20	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18 7.37 7.7	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322 436
LH40 LH41 LH42 LH43 LH44 LH44bis LH44bis LH45 LH49 LH53 LH10 LH11 LH16	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli Suaje-A Toli Mixquiapar Chagchar ignahuapai Buena Vista Sesder	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 14/06/2017 06/06/2017 07/06/2017 07/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek	693563 691046 678612 678606 675386 676367 674704 67429 673429 673429 673429 663532 602311 632199 640766 651010	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327 2182780 2182765 2182765 2182765 2182048 2193963 2183156 2178104 218777	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165 2219		5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000 >10000 12 0.2 6	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 16.8 14 19.5 20.7 20 18.2	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18 7.37 7.7 7.59	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6 8.51 6	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322 436 224
LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH49 LH53 LH10 LH11 LH16 LH29	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Tolu Suaje-A Tolu Mixquiapar Chagchar Chagchar Suena Vista Sesder Igoza-El Sal El Carrizal	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 06/06/2017 07/06/2017 07/06/2017 10/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek Creek Stream	693563 691046 678612 678606 675386 676367 674704 674627 673429 673429 673429 663532 663532 602311 632199 640766 651010 749109	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327 2182780 2182765 2179539 2188048 2193963 2183156 2178104 218777 2138017	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165 2219 204		5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000 >1000 >1000 12 0.2 6 30000?	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 - 16.8 14 19.5 20.7 20 18.2	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18 7.37 7.7 7.59 7.78	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6 5.76 4.91	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322 436 224 155
LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH49 LH53 LH10 LH11 LH16 LH29 LH52	icaco-Ahuci icaco-Ahuci Xiutetelco anta Rosali La Quinta El Progreso Guaje-A Toli Guaje-A Toli Mixquiapar Chagchar Jignahuapai Buena Vista Sesder ygoza-El Sal' El Carrizal	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 14/06/2017 07/06/2017 10/06/2017 14/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek Creek Stream Creek	693563 691046 678612 678606 675386 676367 674704 674627 673429 673429 673429 673429 673429 663532 602311 632199 640766 651010 749109 605336	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327 2182780 2182765 2179539 2188048 2193963 2183156 2178104 218377 2138017 2138017	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165 2219 204 2250		5 80-100 6.5 18 ≈1000 - 90 12 32 n.m.(very low) 12 ≈1000 >10000 12 0.2 6 30000? vari m3	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 - 16.8 14 19.5 20.7 20 18.2 18.4	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18 7.37 7.7 7.59 7.78 7.47	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6 5.76 4.91 n.m.	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322 436 224 155 190
LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH49 LH53 LH10 LH11 LH16 LH29 LH22 LH18	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli Guaje-A Toli Mixquiapar Chagchar Signahuapar Buena Vista Sesder Sgoza-El Sali El Carrizal Signahuapar Alchichica	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 13/06/2017 06/06/2017 07/06/2017 10/06/2017 14/06/2017 08/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek Creek Stream Creek Maar	693563 691046 678612 678606 675386 676367 674704 674627 673429 673429 673429 673429 663532 663532 663531 6631010 749109 605336 668436	2159689 2161084 2189214 2189267 2189267 2189462 2189494 2189327 2182765 2179539 2188048 2193963 2183156 2178104 2187877 2138017 2138313 2147447	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165 2219 204 2250 2326		5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000 >10000 12 0.2 6 30000? vari m3	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 - 16.8 14 19.5 20.7 20 18.2 - 18.4 20.7	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18 7.37 7.7 7.59 7.78 7.47 9.06	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6 5.76 4.91 n.m. 7.59	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322 436 224 155 190 12150
LH40 LH41 LH42 LH43 LH44 LH44 LH45 LH49 LH53 LH10 LH11 LH16 LH19 LH12 LH18 LH22	icaco-Ahuci icaco-Ahuci Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli Suaje-A Toli Mixquiapar Chagchar Chagchar Chagchar Buena Vista Sesder Jgoza-El Sali El Carrizal Zignahuapar Alchichica Quecholar	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 14/06/2017 07/06/2017 07/06/2017 10/06/2017 14/06/2017 08/06/2017 08/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek Creek Stream Creek Maar Maar	693563 691046 678612 678606 675386 675386 67637 674704 674627 673429 673429 673429 673429 673429 663532 602311 632199 640766 651010 749109 605336 6658436 653240	2159689 2161084 2189214 2189267 2189267 2189464 2189327 2182780 2182765 2179539 2188048 2193963 2183156 2178104 2187877 2138017 2138017 2193833 2147447	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165 2219 204 2250 2325 204 2250 2326 2342		5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000 >10000 12 0.2 6 30000? vari m3 -	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 - 16.8 14 19.5 20.7 20 18.2 - 18.2 - 18.2 - - - - - - - - - - - - -	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18 7.37 7.7 7.59 7.78 7.78 7.78 7.78 7.78 7.78 7.78 7.7	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6 5.76 4.91 n.m. 7.59 8.51	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322 436 224 155 190 12150 846
LH40 LH41 LH42 LH43 LH44 LH44 LH45 LH44 LH45 LH53 LH10 LH11 LH16 LH29 LH52 LH18 LH22 LH18 LH22 LH28	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli Suaje-A Toli Suaje-A Toli Mixquiapar Chagchar Chagchar Chagchar Cignahuapai Buena Vista Sesder Jigoa-El Sali El Carrizal Xignahuapai Alchichica Quecholac El Carrizal	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 06/06/2017 07/06/2017 10/06/2017 08/06/2017 08/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek Creek Stream Creek Maar Maar	693563 691046 678612 678606 675386 675386 674607 674704 674429 673429 673429 673429 673429 673429 602311 632199 640766 651010 749109 605336 668346 668346 673240 749122	2159689 2161084 2189214 2189267 2189176 2190668 2189327 2189327 2182765 2179539 2182765 2179539 2182765 2179539 2182048 2183156 2178104 2187877 2138017 2138017 2143473 2143473 2138029	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165 2219 204 2250 2326 2326 2326 2326 2342 204		5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000 >10000 12 0.2 6 300000? vari m3 - - -	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 16.8 14 19.5 20.7 20 18.2	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18 7.37 7.7 7.59 7.78 7.77 7.59 7.78 7.47 9.06 8.74 6.77	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6 5.76 4.91 n.m. 7.59 8.51 0	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322 436 224 436 224 155 190 12150 846 1670
LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH49 LH53 LH10 LH11 LH16 LH29 LH52 LH18 LH52 LH28 LH51	icaco-Ahuca icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli Suaje-A Toli Mixquiapar Chagchar Chagchar Chagchar Chagchar Chagchar Sesder Ngoza-El Sal El Carrizal Xignahuapar Alchichica Quecholac El Carrizal	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 14/06/2017 06/06/2017 10/06/2017 14/06/2017 10/06/2017 10/06/2017 10/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek Creek Creek Stream Creek Maar Maar Yermal spriny	693563 691046 678612 678606 675386 675386 6763429 673429 673429 673429 673429 673429 673429 673429 673429 602311 632199 640766 651010 749109 605336 668436 673240 7749129	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327 2182765 2179539 2182765 2179539 2182765 2179539 2182765 2179539 2183048 2183765 2178104 218377 2138017 2138032 2147447 2138022 2193816	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165 2219 204 2250 2326 2342 204 2260		5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000 >1000 12 0.2 6 30000? vari m3 - ≈1200 n.k	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 16.8 14 19.5 20.7 20 18.2	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18 7.37 7.7 7.59 7.78 7.47 9.06 8.74 6.67 7.626	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6 5.76 4.91 n.m. 7.59 8.51 0 0	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322 436 224 155 190 12150 846 1670 1600
LH40 LH41 LH42 LH43 LH44 LH44bis LH44bis LH45 LH49 LH53 LH10 LH11 LH16 LH29 LH52 LH18 LH22 LH28 LH21 LH47	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toll Mixquiapar Chagchar ignahuapai Buena Vista Sesder igoza-El Sal El Carrizal ignahuapai Alchichica Quecholac El Carrizal ignahuapai	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 06/06/2017 07/06/2017 14/06/2017 14/06/2017 08/06/2017 14/06/2017 14/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek Creek Creek Stream Creek Maar Maar Nermal sprin Vermal sprin	693563 691046 678612 678606 675386 676367 674627 674627 673429 673429 673429 673429 673429 673429 673429 673210 632199 640766 651010 749109 605336 668436 673240 7749122 605354	2159689 2161084 2189214 2189267 2189176 21890668 2189494 2189327 2182765 2179539 2182765 2177539 2182765 2179539 2182765 2179539 2182765 2178104 2187877 2138017 2138017 213833 2147447 2143473 2138022 2193816	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165 2219 204 2250 2326 2342 204 2260 2809	- - - - - - - - - - - - - - - - - - -	5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000 >1000 12 0.2 6 30000? vari m3 - - ≈1200 n.k.	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 16.8 14 19.5 20.7 20 18.2 18.4 20.7 24.1 39.1 50.4 33.3	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18 7.37 7.7 7.59 7.78 7.47 9.06 8.74 6.77 6.27	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6 5.76 4.91 n.m. 7.59 8.51 0 n.m. 5.55	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322 436 224 155 190 12150 846 1670 1600 1028
LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH49 LH53 LH10 LH11 LH16 LH29 LH52 LH18 LH22 LH28 LH28 LH51 LH4°	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli Suaje-A Toli Suaje-A Toli Mixquiapar Chagchar ignahuapai Buena Vista Sesder igoza-El Sal El Carrizal Zignahuapai Alchichica Quecholac El Carrizal Zignahuapai Pozo 29 Destro 29	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 07/06/2017 07/06/2017 10/06/2017 10/06/2017 10/06/2017 10/06/2017 13/06/2017 13/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek Creek Creek Creek Stream Creek Maar Maar Nermal sprir Injection w	693563 691046 678612 678606 675386 676367 674027 674627 673429 673429 673429 673429 673429 673429 673429 673429 640766 651010 749109 605336 668436 673240 749122 605354 661800	2159689 2161084 2189214 2189267 2189176 2189068 2189494 2189327 2182780 2182780 2182780 2182765 2179539 2188048 2193963 2179539 2188048 2179539 2188048 2179833 2147447 2138022 2193816 2177843	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165 2219 204 2250 2326 2326 2342 204 2250 2326 2342	- - - - - - - - - - - - - - - - - - -	5 80-100 6.5 18 ≈1000 · 90 12 32 n.m. (very low) 12 ≈1000 >1000 12 0.2 6 30000? vari m3 · · ≈1200 n.k. ·	9,5 11.7 16 18 15.9 15.5 17 16.4 14.7 16.8 14 19.5 20.7 20 18.2 18.2 18.4 20.7 24.1 39.1 50.4 33.3 24.1	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18 7.37 7.7 7.59 7.78 7.47 9.06 8.74 6.77 6.26 7.7	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6 5.76 4.91 n.m. 7.59 8.51 0 n.m. 7.59 8.51 0 n.m.	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322 436 224 155 190 12150 846 1670 1600 1028
LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH49 LH53 LH10 LH11 LH16 LH29 LH52 LH18 LH22 LH28 LH21 LH28 LH51 LH47 LH48	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli Suaje-A Toli Suaje-A Toli Guage-A Toli Mixquiapar Chagchar ignahuapai Buena Vista Sesder igoza-El Sal El Carrizal Zignahuapai Alchichica Quecholac El Carrizal Zignahuapai Pozo 29 Pozo 38	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 06/06/2017 07/06/2017 07/06/2017 14/06/2017 08/06/2017 14/06/2017 14/06/2017 13/06/2017 13/06/2017 13/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek Creek Creek Stream Creek Maar Maar Nermal sprir injection w injection w	693563 691046 678612 678606 675386 676367 674024 674627 673429 673429 673429 673429 663532 602311 632199 640766 651010 749109 605336 668436 673240 749122 605354 661884 661889	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327 2182780 2182765 21782780 2182765 21782780 2183048 2193963 2183156 2178104 2187877 2138017 213833 2147447 2143473 2138022 2193816 2177843 2178151	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165 2219 204 2250 2326 2326 2342 204 2250 2326 2342 204 2260 2809 2794	- - - - - - - - - - - - - - - - - - -	5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000 >1000 >1000 >12 0.2 6 30000? vari m3 - ≈1200 n.k. -	9.5 11.7 16 18 15.9 15.5 17 16.4 14.7 16.8 14 19.5 20.7 20 18.2 18.4 20.7 24.1 39.1 50.4 33.3 34.1	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 0.88 7.24 0.61 7.39 7.18 7.37 7.7 7.59 7.78 7.77 7.59 7.78 7.47 9.06 8.74 6.26 7.7 6.26 7.7	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6 5.76 4.91 n.m. 7.59 8.51 0 0 n.m. 5.56 4.43	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322 436 224 155 190 12150 846 1670 1600 1028 1069
LH40 LH41 LH42 LH43 LH44 LH44bis LH44 LH44bis LH45 LH49 LH53 LH10 LH11 LH16 LH29 LH52 LH18 LH22 LH28 LH51 LH28 LH51 LH47 LH48	icaco-Ahuca icaco-Ahuca Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Tolu Suaje-A Tolu Suaje-A Tolu Mixquiapar Chagchar Chagchar Chagchar Buena Vista Sesder Igoza-El Sal El Carrizal Xignahuapar Alchichica Quecholac El Carrizal Xignahuapar Pozo 29 Pozo 38	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 07/06/2017 10/06/2017 14/06/2017 14/06/2017 10/06/2017 14/06/2017 13/06/2017 13/06/2017 13/06/2017 13/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek Creek Creek Stream Creek Maar Maar vermal sprin injection w	693563 691046 678612 678606 675386 676367 674704 674627 673429 673429 673429 663532 602311 632199 640766 651010 749109 605336 668436 673240 749122 605354 661884 661889	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327 2182780 2182785 2182785 2182785 2182785 2183047 2183017 2183017 2138017 2138017 213833 2147447 2138022 2193816 2177843 2178151	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165 2219 204 2250 2326 2326 2342 204 2250 2326 2342 204 2260 2326 2342 204 2260 2399 2794 Sam	- - - - - - - - - - - - - - - - - - -	5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000 >1000 >12 0.2 6 30000? vari m3 - ≈1200 n.k. -	9,5 11.7 16 18 15.9 15.5 17 16.4 14.7 - 16.8 14 19.5 20.7 20 18.2 18.4 20.7 24.1 39.1 50.4 33.3 34.1	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 0.61 7.39 7.18 7.37 7.7 7.59 7.78 7.47 9.06 8.74 6.77 6.26 7.7 7.66	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6 5.76 4.91 n.m. 7.59 8.51 0 n.m. 7.59 8.51 0 n.m. 5.56 4.43	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 1077 322 436 224 155 190 12150 846 1670 1600 1028 1069
LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH49 LH53 LH10 LH11 LH10 LH29 LH52 LH28 LH21 LH28 LH21 LH2	icaco-Ahuci icaco-Ahuci Xiutetelco anta Rosali La Quinta El Progreso Suaje-A Toli Suaje-A Toli Suaje-A Toli Mixquiapar Chagchar Jignahuapar Buena Vista Sesder 1902a-El Sal' El Carrizal Lignahuapar Alchichica Quecholac El Carrizal Lignahuapar Pozo 29 Pozo 38	11/06/2017 11/06/2017 11/06/2017 11/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 12/06/2017 13/06/2017 06/06/2017 07/06/2017 14/06/2017 14/06/2017 14/06/2017 14/06/2017 14/06/2017 13/06/2017 13/06/2017 13/06/2017 13/06/2017 13/06/2017 13/06/2017 13/06/2017 13/06/2017 13/06/2017 13/06/2017 13/06/2017 13/06/2017	Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Creek Creek Creek Creek Creek Stream Creek Maar Maar Nermal sprin injection w injection w	693563 691046 678612 678606 675386 676367 674704 674627 673429 673429 673429 6635321 6635321 6635321 6635321 6635321 665301 749109 605336 668436 673240 749122 605354 661884 661889	2159689 2161084 2189214 2189267 2189176 2190668 2189494 2189327 2182780 2182765 2179539 2188048 2193963 2183156 2179510 2193833 2183156 2178104 2193833 2147447 2138017 2193833 2147447 2138022 2193816 2177843 2178151	3406 3098 1950 1937 1933 1876 1939 1965 2516 2520 2292 2389 2263 2136 2165 2219 204 2250 2326 2326 2326 2342 204 2250 2326 2342 204 2250 2326 2342 204 2260 2392 2342 204 2250 2355	- - - - - - - - - - - - - - - - - - -	5 80-100 6.5 18 ≈1000 - 90 12 32 n.m. (very low) 12 ≈1000 >10000 12 0.2 6 30000? vari m3 - ≈1200 n.k. -	9,5 11.7 16 18 15.9 15.5 17 16.4 14.7 - 16.8 14 19.5 20.7 20 18.2 18.4 20.7 24.1 39.1 50.4 33.3 34.1 18.5	6.79 6.53 7.14 7.6 7.85 7.07 6.64 6.88 7.24 n.m. 6.61 7.39 7.18 7.37 7.7 7.59 7.18 7.37 7.7 7.59 7.78 7.47 9.06 8.74 6.26 7.7 7.66	9.34 6.6 6.37 6.92 6.5 8.31 6.75 6.18 7.99 n.m. 4.4 6.56 n.m. 8.51 6 5.76 4.91 n.m. 7.59 8.51 0 n.m. 5.56 4.43	63.8 98 113 122 81.2 83.7 205 187 54.2 n.m. 96.8 106.3 177 322 436 224 155 190 12150 846 1670 1600 1028 1069

Code	Name	Date (dd/mm/yy)	Туре	X (m)	Y (m)	Alt. (m.a.s.l.)	Depth (m)	Flow rate (L/min.)	T (°C)	рН	O2 diss. (mg/L) E.C. (µS/cm
LH17	Zacatepec	23/03/2018	well	653448	2131216	2363	55	22	18.2	6.83	4.68	2372
LH17bis	la del Carm	23/03/2018	well	653583	2130937	2365	70	15	19.1	7.1	n.m.	2080
LH46	4_Los_Hum	21/03/2018	well	658269	2175133	2753	350	n.k.	23	7.22	4.56	349.4
LH46_bis	verancia_Lo	21/03/2018	well	658859	2175920	2755	320	n.k.	28.4	6.64	6.64	499.5
LH50	cho_Los_Sa	19/03/2018	well	680858	2173556	2400	180	50	20	7.48	4.91	570
LH50_bis	cho_Los_OI	19/03/2018	well	680475	2172813	2396	200	n.k.	21.4	7.68	6.75	610
LH54	ardin_Dora	17/03/2018	well	674864	2163728	2379	120	67	22.7	7.29	4.16	1569
LH55	ardin Dora	17/03/2018	well	675821	2163313	2371	150	n.k.	24.5	7.26	3.27	1445
LH61	ijol_Colora	20/03/2018	well	673285	2166838	2397	136	n.k.	27.4	7.55	5.51	994.9
LH77	vo Horizor	16/03/2018	well	611575	2136286	2531	170	25	17.6	6.39	3.59	531.6
LH78	os San Anto	16/03/2018	well	612596	2134938	2532	250	30	21.9	6.42	3.96	606.3
LH79	zos San Lu	16/03/2018	well	612459	2134071	2580	300	22	20	6.32	3.43	674.3
LH80) Lienzo Ch	16/03/2018	well	614467	2136187	2469	150	24	21.8	6.75	5.66	660.6
LH81	n Paolo Zit	16/03/2018	well	615761	2124399	2517	210	22	20.5	7.47	5.52	654
PER27	ncho Lome	20/03/2018	well	680844	2174565	2378	180	35	20.8	7.35	3.58	959
PER30	/PH1 Perote	21/03/2018	well	677699	2163587	2358	200	n.k.	18.1	7.28	5.99	916.2
PER31	quiapan P	21/03/2018	well	679749	2170703	2379	200	45	32.8	7.2	3.66	1158
PER36	Alchichico1	22/03/2018	well	671945	2147350	2344	100	50	19.3	7.46	5.43	606
PFR37	Xaltena1	22/03/2010	well	672734	2146.889	2341	100	50	18.7	7.81	6.01	590
PERSS	Alchichico?	22/03/2018	well	671211	2147702	2341	100	50	18.8	7.95	6.27	855
DEDDO	scho El Dra	22/03/2010	well	691200	2147703	2347	200	75	17.0	074	702	101
PER39	Animas1	22/03/2018	wen	681398	2103052	2377	200	/5	17.1	8.74	7.83	283
PER40	Animas1	23/03/2018	well	649222	2105052	23/2	200	100	10.8	7.44	0.87	3/9.0
PER42	ncho San la	23/03/2018	well	648232	2123760	23/2	n.K.	n.K.	19	7.8	4.24	/48./
PER43	cho san Abr	23/03/2018	well	652557	2128/14	2303	60	n.ĸ.	20.3	0.9	2.83	2315
PER44		23/03/2018	well	647497	2121426	2355	n.ĸ.	n.ĸ.	17.3	7.65	2.72	652.6
PER47		26/03/2018	well	6/191/	2139383	2360	145	20	18.3	7.74	5.93	/00.9
PER48		26/03/2018	well	669183	2141039	2351	n.ĸ.	n.ĸ.	18.1	7.15	2.18	948.5
PER49		26/03/2018	well	668/60	2135259	2361	n.k.	n.k.	16.3	/.66	5.22	5/2.3
PER51		26/03/2018	well	657833	2137770	2406	140	25	34.8	7.59	4.56	6083
PER52		26/03/2018	well	644520	2145892	2333	56	74	20.8	7.9	6.58	915.3
PER53		27/03/2018	well	672068	2145060	2336	18	15	21.7	7.82	5074	1003
Code	Name	Date (dd/mm/yy)	Туре	X (m)	Y (m)	Alt. (m.a.s.l.)	Depth (m)	Flow rate (L/min.)	T (℃)	рН	O2 diss. (mg/L) E.C. (μS/cm
PER54		27/03/2018	well	679934	2166525	2380	127	26	23.7	7.34	5.14	1465
PER55				675570	2165414	2383	137	24	2.4	7.0	E 0 E	40 5 1
		27/03/2018	wen	073370	2100414				24	7.3	5.35	4351
PER56		27/03/2018	well	677541	2171184	2394	150	40	33.1	7.29	4.04	1309
PER56 PER57		27/03/2018 27/03/2018 27/03/2018	well	677541 677973	2171184 2168749	2394 2377	150 127	40 n.k.	33.1 30.2	7.29	4.04	1309 1686
PER56 PER57 PER58		27/03/2018 27/03/2018 27/03/2018 27/03/2018	well well well	677541 677973 682191	2100 414 2171184 2168749 2166730	2394 2377 2381	150 127 130	40 n.k. 26	33.1 30.2 17.9	7.29 7.22 7.67	4.04 4.57 7.43	4351 1309 1686 471.1
PER56 PER57 PER58 PER59		27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018	well well well well	677541 677973 682191 680414	2171184 2168749 2166730 2170213	2394 2377 2381 2365	150 127 130 130	40 n.k. 26 26	33.1 30.2 17.9 23.5	7.29 7.22 7.67 7.65	5.35 4.04 4.57 7.43 6.45	4351 1309 1686 471.1 991.2
PER56 PER57 PER58 PER59 PER60		27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018	well well well well well	677541 677973 682191 680414 684817	2171184 2168749 2166730 2170213 2171039	2394 2377 2381 2365 2368	150 127 130 130 116	40 n.k. 26 26 18	33.1 30.2 17.9 23.5 17.9	7.3 7.29 7.22 7.67 7.65 7.64	5.35 4.04 4.57 7.43 6.45 6.7	4351 1309 1686 471.1 991.2 709.5
PER56 PER57 PER58 PER59 PER60 PER71	La Soledad	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018	well well well well well well	677541 677973 682191 680414 684817 637092	2171184 2168749 2166730 2170213 2171039 2140786	2394 2377 2381 2365 2368 2391	150 127 130 130 116 n.k.	40 n.k. 26 26 18 n.k.	33.1 30.2 17.9 23.5 17.9 24.3	7.3 7.29 7.22 7.67 7.65 7.64 8	5.35 4.04 4.57 7.43 6.45 6.7 6.31	4351 1309 1686 471.1 991.2 709.5 591
PER56 PER57 PER58 PER59 PER60 PER71 PER72	La Soledad Iguito CNA 1	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018	well well well well well well well	677541 677973 682191 680414 684817 637092 634758	2100114 2171184 2168749 2166730 2170213 2171039 2140786 2141050	2394 2377 2381 2365 2368 2391 2394	150 127 130 130 116 n.k. n.k.	40 n.k. 26 26 18 n.k. n.k.	33.1 30.2 17.9 23.5 17.9 24.3 20.8	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01	4331 1309 1686 471.1 991.2 709.5 591 431.3
PER56 PER57 PER58 PER59 PER60 PER71 PER72 PER73	La Soledad Iguito CNA T I José Ma. N	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018	well well well well well well well well	677541 677973 682191 680414 684817 637092 634758 636376	2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801	2394 2377 2381 2365 2368 2391 2394 2389	150 127 130 130 116 n.k. n.k. n.k.	40 n.k. 26 26 18 n.k. n.k. n.k. n.k.	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5
PER56 PER57 PER58 PER59 PER60 PER71 PER72 PER73 PER74	La Soledad Iguito CNA ⁻ I José Ma. N ría Las Cuev	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018	well well well well well well well well	677541 677973 682191 680414 684817 637092 634758 636376 632711	2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047	2394 2377 2381 2365 2368 2391 2394 2389 2404	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k.	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. n.k.	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8
PER56 PER57 PER58 PER59 PER60 PER71 PER72 PER73 PER74	La Soledad Iguito CNA T I José Ma. N ría Las Cuev uevo Pizarr	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018	well well well well well well well well	677541 677973 682191 680414 684817 637092 634758 636376 632711 662435	2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k.	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. n.k. n.k.	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m.	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090
PER56 PER57 PER58 PER59 PER60 PER71 PER72 PER73 PER74 PER78 LH5	La Soledad Iguito CNA 1 I José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 23/03/2018 22/03/2018	well well well well well well well well	677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888	2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k.	40 n.k. 26 18 n.k. n.k. n.k. n.k. n.k. n.k. 0.22	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5
PER56 PER57 PER58 PER59 PER60 PER71 PER72 PER73 PER74 PER78 LH5 LH6	La Soledad)guito CNA [†]) José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 23/03/2018 22/03/2018 22/03/2018	well well well well well well well well	677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866	2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k. -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. n.k. 0.22 0.17	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706
PER56 PER57 PER58 PER59 PER60 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6bis	La Soledad iguito CNA T José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 23/03/2018 22/03/2018 22/03/2018 22/03/2018	well well well well well well well well	677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 645586	2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2178908	2394 2377 2381 2365 2368 2391 2394 2389 2404 2389 2404 2340 2473 2436 2476	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k. - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8	7.3 7.29 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3
PER56 PER57 PER58 PER59 PER60 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6bis LH7	La Soledad aguito CNA T a José Ma. N ría Las Cuev uevo Pizarr uitzitzilapa apan(lavad Ti huapan La Olimpica	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 23/03/2018 22/03/2018 22/03/2018 22/03/2018	well well well well well well well well	677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 645586 644236	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2140801 2141047 2155825 2180329 2179181 2178908 2179782	2394 2377 2381 2365 2368 2391 2394 2389 2404 2389 2404 2340 2473 2436 2476 2345	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k. - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2
PER56 PER57 PER58 PER59 PER60 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6bis LH7	La Soledad aguito CNA T a José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpica La Olimpica	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 23/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018	well well well well well well well well	677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 645586 644236 644174	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2178908 2179782 2179649	2394 2377 2381 2365 2368 2391 2394 2389 2404 2389 2404 2340 2473 2436 2476 2345 2379	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k. - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not measuarable	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8	7.3 7.29 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.58	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671
PER56 PER57 PER58 PER59 PER50 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6bis LH7 LH7* LH8	La Soledad Iguito CNA T José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpica La Olimpica	2//03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018	well well well well well well well well	677541 677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 645586 644236 644174 644457	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2178908 2179782 2179649 2179520	2394 2377 2381 2365 2368 2391 2394 2389 2404 2389 2404 2340 2473 2436 2476 2345 2379 2435	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k. - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not_measuarable dripping	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.58 4.78	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5
PERS6 PERS7 PERS9 PER59 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6bis LH7 LH7* LH8	La Soledad Iguito CNA T José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpica La Olimpica	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018	well well well well well well well well	677541 677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 645586 644236 644174 644457 643291	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2178908 2179782 2179649 2179520 2180338	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436 2476 2345 2379 2435 2732	150 127 130 130 116 n.k. n.k. n.k. n.k. - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable dripping not_measuarable	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 14	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.72	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.58 4.78 8.43	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5 559.5
PER56 PER57 PER58 PER59 PER60 PER71 PER72 PER74 PER74 PER75 LH6 LH6 LH6 LH6 LH7 LH7* LH8 LH8bis LH9	La Soledad Iguito CNA T José Ma. N ría Las Cuev uevo Pizarr uitzitzilapa apan(lavad Tihuapan La Olimpica La Olimpica La Olimpica	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018	well well well well well well well well	677541 677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 645586 644236 644174 644457 643291 633513	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2178908 2179782 2179649 2179520 2180338 2183084	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436 2476 2345 2379 2435 2435 2232 2392	150 127 130 130 116 n.k. n.k. n.k. n.k. - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_meas uarable dripping not_meas uarable dripping	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 14.1 13	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.72 6.71	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.7 6.1 6.81 6.58 4.78 8.43 8.43 8.43	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5 559.5
PER56 PER57 PER58 PER59 PER60 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6bis LH6bis LH7* LH8 LH8bis LH9	La Soledad Iguito CNA T José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpi ca La Olimpi ca La Olimpi ca Buena vista	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 23/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 27/03/2018	well well well well well well well well	677541 677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 645866 644236 644174 644174 644457 643291 633513 630647	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2178908 2179782 2179649 2179520 2180338 2183084 2183084	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436 2476 2345 2379 2435 2379 2435 2232 2392	150 127 130 130 116 n.k. n.k. n.k. n.k. - - - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not_measuarable dripping not_measuarable very low	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 14 13 18.4	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.72 6.71	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.58 4.78 8.43 8.47 4.07	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.3 706 954.3 493.2 671 686.5 559.5 559.5
PER56 PER57 PER58 PER59 PER60 PER71 PER73 PER74 PER74 PER78 LH5 LH6 LH6bis LH6 LH7 LH7* LH8 LH8 LH9 LH9 LH14bis	La Soledad Iguito CNA 1 3 José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpica La Olimpica La Olimpica Buena vista sender	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 23/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 27/03/2018 27/03/2018	well well well well well well well well	677541 677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 645886 644236 644174 644457 643291 633513 640647 654015	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2141050 21410801 2141047 2155825 2180329 2179181 2178908 2179782 2179649 2179520 2180338 2183084 2178480 2185782	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436 2476 2345 2379 2435 2379 2435 2232 2392 2205	150 127 130 130 116 n.k. n.k. n.k. n.k. - - - - - - - - - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_meas uarable dripping not_meas uarable very low n.m.	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 14 13 18.4 12.7	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.72 6.71 7.72	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.58 4.78 8.43 8.47 4.07 7.22	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.3 706 954.3 493.2 671 686.5 559.5 559.5 869.3 61 95
PER56 PER57 PER58 PER59 PER71 PER71 PER71 PER74 PER74 PER74 LH5 LH6 LH6 LH7 LH7 LH8 LH8 LH8 LH8 LH9 LH9 LH12 LH2	La Soledad Iguito CNA 1 José Ma. N ría Las Cuev uevo Pizarr uitzizi lapa apan(lavad Ti huapan La Olimpica La Olimpica La Olimpica sender rtloiuquitep	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 27/03/2018 27/03/2018 27/03/2018	well well well well well well well well	677541 677541 677973 682191 680414 684817 634758 634758 634758 634758 632711 662435 648888 645866 644586 644236 644174 644457 643291 633513 640647 6584015	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2141050 2141047 2155825 2180329 2179181 2178908 2179782 2179649 2179520 2180338 2183084 2183084 2185782 21845782	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436 2476 2345 2379 2435 2232 2392 2205 2405	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k. - - - - - - - - - - - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not_measuarable dripping not_measuarable very low n.m. 2 0.042	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 14 13 18.4 14.1 14 20.8 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.72 6.71 7.47 7.43	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.58 4.78 8.43 8.47 4.07 7.33 7.5	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5 559.5 559.5 869.3 61.95
PER56 PER57 PER58 PER59 PER60 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6bis LH7 LH7* LH8 LH8bis LH9 LH12 LH14bis LH9	La Soledad Iguito CNA T José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpica La Olimpica Buena vista sender rtloiuquitep Nacimiento	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018	well well well well well well well well	677541 677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 644586 644236 644174 644457 643291 633513 640647 654015 655242 685242	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2141050 2141047 2155825 2180329 2179181 2178908 2179782 2179649 2179520 2180338 2183084 2178480 2185782 2181605	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436 2476 2345 2379 2435 2232 2392 2205 2405 2405	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k. - - - - - - - - - - - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not_measuarable dripping not_measuarable very low n.m. 2 0.042	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 14 13 18.4 12.7 8.9	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.72 6.71 7.47 7.23 6.72	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.58 4.78 8.43 8.47 4.07 7.33 7.5	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5 559.5 559.5 559.5 869.3 61.95 188
PER56 PER57 PER58 PER59 PER70 PER71 PER72 PER74 PER74 PER78 LH5 LH6 LH6bis LH7 LH7* LH8 LH8bis LH8 LH8 LH8 LH8 LH9 LH12L LH14bis LH23 LH14bis	La Soledad Iguito CNA 1 José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpica La Olimpica La Olimpica Buena vista sender ntloiuquitep Nacimiento lacimiento	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 26/03/2018	well well well well well well well well	677541 677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 644536 644236 644174 644457 643291 633513 640647 654015 685242 6855059	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2141050 2140801 2141047 2155825 2180329 2179181 2179520 2180338 2179520 2180338 2183084 2178480 2185782 2141605 2141722	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436 2476 2345 2379 2435 2379 2435 2232 2392 2205 2405 2998 29977	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k. - - - - - - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not_measuarable dripping not_measuarable very low n.m. 2 0.042 0.57	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 14 13 18.4 12.7 8.9 11.7	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.72 6.71 7.47 7.23 6.78 6.71	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.58 4.78 8.43 8.47 4.07 7.33 7.5 7.25	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5 559.5 559.5 869.3 61.95 188 210
PER56 PER57 PER58 PER59 PER70 PER71 PER73 PER74 PER78 LH5 LH6 LH6bis LH7 LH7* LH8 LH8bis LH9 LH12 LH8 LH9 LH12 LH14bis LH9 LH12 LH14bis	La Soledad Iguito CNA 1 José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpi ca La Olimpi ca La Olimpi ca Buena vista s ender ntloiuquitep Nacimiento lacimi ento : Oczotla	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 26/03/2018 26/03/2018	well well well well well well well well	677541 677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 644536 644236 644174 644457 643291 633513 640647 654015 685242 685059 683402	2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2179582 2179782 2179649 2179520 2180338 2183084 2178480 2185782 2141605 2141722 2141025	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436 2476 2345 2379 2435 2379 2435 2232 2392 2205 2405 2998 2977 2770	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k. n.k. - - - - - - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not_measuarable dripping not_measuarable very low n.m. 2 0.042 0.57 2	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 14 13 18.4 12.7 8.9 11.7 11.3	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.72 6.71 7.47 7.23 6.78 6.71 6.98	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.58 4.78 8.43 8.47 4.07 7.33 7.5 7.25 7.34	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5 559.5 559.5 869.3 61.95 188 210 114.4
PER56 PER57 PER58 PER59 PER70 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6bis LH7 LH6bis LH7 LH8bis LH9 LH12 LH8bis LH9 LH12 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH24 LH25 LH25 LH25 LH25 LH25 LH25 LH25 LH25	La Soledad Iguito CNA 7 José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpica La Olimpica La Olimpica Buena vista sender itloiuquitep Nacimiento lacimiento: Oczotla issima Trin	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 26/03/2018 26/03/2018	well well well well well well well well	677541 677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 6445386 644236 644236 644457 643291 633513 640647 654015 685242 685059 683402 683402	2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2179582 2179782 2179649 2179520 2180338 2183084 2178480 2185782 2180384 2185782 2141605 2141722 2141025	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436 2476 2345 2379 2435 2379 2435 2232 2392 2205 2405 2998 2977 2770 2770	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k. - - - - - - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not_measuarable dripping not_measuarable very low n.m. 2 0.042 0.57 2 n.m.	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 14 13 18.4 12.7 8.9 11.7 11.3 n.s.	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.72 6.71 7.47 7.23 6.78 6.71 6.98 n.s.	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.58 4.78 8.43 8.43 8.47 4.07 7.33 7.5 7.25 7.34 n.s.	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5 559.5 559.5 869.3 61.95 188 210 114.4 n.s.
PER56 PER57 PER58 PER59 PER70 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6 LH6 LH6 LH6 LH7 LH8 LH8 LH9 LH2 LH8 LH9 LH2 LH2 LH2 LH2 LH2 LH2 LH2 LH2 LH2 LH2	La Soledad Iguito CNA 7 José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpica La Olimpica La Olimpica Buena vista sender rtloiuquitep Nacimiento lacimiento lacimiento sisima Trin issima Trin	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 27/03/2018 27/03/2018 27/03/2018 26/03/2018 26/03/2018 26/03/2018	well well well well well well well well	677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 644586 644236 644236 644174 644457 643291 633513 640647 654015 685242 685059 683402 684493 684558	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2179582 2179782 2179782 2179782 2179549 2179520 2180338 2183084 2178480 2185782 2141605 2141722 2134626 2134658	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436 2476 2345 2379 2435 2379 2435 2392 2205 2405 2998 2977 2770 2907 2906	150 127 130 130 116 n.k. n.k. n.k. n.k. n.k. - - - - - - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not_measuarable dripping not_measuarable very low n.m. 2 0.042 0.57 2 n.m. n.m.	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 14 13 18.4 12.7 8.9 11.7 11.3 n.s. n.s.	7.3 7.29 7.22 7.67 7.65 7.64 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.72 6.71 7.47 7.23 6.78 6.71 6.98 n.s. n.s.	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.58 4.78 8.43 8.47 4.07 7.33 7.5 7.25 7.34 n.s. n.s.	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5 559.5 559.5 869.3 61.95 188 210 114.4 n.s. n.s.
PERS6 PERS7 PERS9 PER50 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6bis LH7 LH8bis LH9 LH8bis LH9 LH2L LH2L LH2L LH2L LH2L LH2L LH2L	La Soledad Iguito CNA T José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpi ca La Olimpi ca La Olimpi ca La Olimpi ca Buena vista sender rtloiuquitep Nacimiento Jacimi ento : Oczotla issi ma Trin Mazapa	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 27/03/2018 27/03/2018 27/03/2018 26/03/2018 26/03/2018 26/03/2018	well well well well well well well well	677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 6445386 644236 644236 644457 643291 633513 640647 653513 640647 6554015 685242 685059 683402 684493 684558 682518	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2179582 2179782 2179782 2179782 2179520 2180338 2183084 2178480 2185782 2141605 2141722 2141025 2134626 2134658 2179263	2394 2377 2381 2365 2368 2391 2394 2389 2404 2389 2404 2340 2473 2436 2476 2345 2379 2435 2379 2435 2232 2392 2205 2405 2998 2977 2770 2907 2906 2221	150 127 130 130 116 n.k. n.k. n.k. n.k. - - - - - - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not_measuarable dripping not_measuarable very low n.m. 2 0.042 0.57 2 n.m. n.m. 0.003	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 14 13 18.4 12.7 8.9 11.7 11.3 n.s. n.s. 13.3	7.3 7.29 7.22 7.67 7.65 7.64 8 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.23 6.71 7.47 7.23 6.78 6.71 6.98 n.s. n.s. 7.17	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.81 6.58 4.78 8.43 8.47 4.07 7.33 7.5 7.25 7.34 n.s. n.s. 7	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5 559.5 869.3 61.95 188 210 114.4 n.s. n.s. 122
PER56 PER57 PER58 PER59 PER70 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6 LH6 LH6 LH6 LH7 LH8 LH8 LH9 LH12 LH2 LH2 LH2 LH2 LH2 LH2 LH2 LH2 LH2 LH	La Soledad Iguito CNA T José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpica La Olimpica La Olimpica Buena vista sender rtloiuquitep Nacimiento Jacimiento Jacimiento Sisima Trin Mazapa Aazapa 2_bi	2//03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 27/03/2018 27/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018	well well well well well well well well	677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 644586 644236 644236 644457 643291 633513 640647 653513 640647 6535242 685059 683402 684493 684558 682518 682456	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2179582 2179782 2179782 2179782 2179782 2179520 2180338 2183084 2178480 2185782 2141605 2141722 2141025 2134626 2134658 2179263 2179186	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436 2476 2345 2379 2435 2379 2435 2232 2392 2205 2405 2998 2977 2770 2907 2906 2221 2255	150 127 130 130 116 n.k. n.k. n.k. n.k. - - - - - - - - - - - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not_measuarable dripping not_measuarable very low n.m. 2 0.042 0.57 2 n.m. n.m. 0.003 1.5	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 13 18.4 12.7 8.9 11.7 11.3 n.s. n.s. 13.3 15.2	7.3 7.29 7.22 7.67 7.65 7.64 8 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.72 6.71 7.47 7.23 6.78 6.71 6.98 n.s. n.s. 7.17 7.34	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.81 6.58 4.78 8.43 8.47 4.07 7.33 7.5 7.25 7.34 n.s. 7 6.52	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5 559.5 869.3 61.95 188 210 114.4 n.s. n.s. 122 126
PER56 PER57 PER58 PER59 PER70 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6 LH6 LH6 LH7 LH8 LH8 LH9 LH2 LH2 LH2 LH2 LH2 LH2 LH2 LH2 LH2 LH2	La Soledad iguito CNA 1 a José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Ti huapan La Olimpica La Olimpica La Olimpica Buena vista sender itloiuquitep Nacimiento Jacimiento Jacimiento Sisima Trin Mazapa Aazapa2_bi Mazapa3	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018	well well well well well well well well	677541 677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 644236 644236 644236 644457 643291 633513 640647 653212 685242 685059 683402 684493 684558 682518 682456 682802	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2179582 2179782 2179782 2179549 2179520 2180338 2183084 2178480 2185782 2141025 2141025 2141025 2134626 2134658 2179263 2179186 2178721	2394 2377 2381 2365 2368 2391 2394 2389 2404 2340 2473 2436 2476 2345 2379 2435 2232 2392 2205 2405 2998 2997 2770 2997 2770 2906 2221 2255 2280	150 127 130 130 116 n.k. n.k. n.k. n.k. - - - - - - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not_measuarable dripping not_measuarable very low n.m. 2 0.042 0.57 2 0.057 2 n.m. 1.5	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 14 13 18.4 12.7 8.9 11.7 11.3 n.s. n.s. 13.3 15.2 15.3	7.3 7.29 7.22 7.67 7.65 7.64 8 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.32 7.8 7.46 7.1 7.72 6.71 7.47 7.23 6.78 6.71 6.98 n.s. 7.17 7.34 6.9	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.81 6.58 4.78 8.43 8.47 4.07 7.33 7.5 7.25 7.34 n.s. 7 6.52 6.92	4331 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5 559.5 869.3 61.95 188 210 114.4 n.s. n.s. 122 126 172
PER56 PER57 PER58 PER59 PER70 PER71 PER72 PER73 PER74 PER78 LH5 LH6 LH6bis LH7 LH8 LH8bis LH9 LH2 LH2 LH2 LH2 LH2 LH2 LH2 LH2 LH2 LH2	La Soledad iguito CNA 1 i José Ma. N ría Las Cuev uevo Pizarr uitzitzi lapa apan(lavad Tihuapan La Olimpica La Olimpica La Olimpica La Olimpica Buena vista sender itloiuquitep Nacimiento Jacimiento Jacimiento Sisima Trin Mazapa Aazapa2_bi Mazapa3 zingo-EL_Te	27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 27/03/2018 28/03/2018 28/03/2018 28/03/2018 28/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 22/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018 26/03/2018 29/03/2018	well well well well well well well well	677541 677541 677973 682191 680414 684817 637092 634758 636376 632711 662435 648888 645866 645586 644236 644236 644236 644457 643291 633513 640647 653212 685242 685059 683402 684493 684558 682518 682456 682257	2171184 2171184 2168749 2166730 2170213 2171039 2140786 2141050 2140801 2141047 2155825 2180329 2179181 2179582 2179782 2179782 2179782 2179520 2180338 2183084 2178480 2185782 2141025 2141025 2141025 2134626 2134658 2179263 2179186 2178721 2182923	2394 2377 2381 2365 2368 2391 2394 2389 2404 2389 2404 2340 2473 2436 2476 2345 2379 2435 2232 2392 2205 2405 2998 2997 2770 2997 2906 2221 2255 2280 2095	150 127 130 130 116 n.k. n.k. n.k. n.k. - - - - - - - - - - - - -	40 n.k. 26 26 18 n.k. n.k. n.k. n.k. 0.22 0.17 not_measuarable 0.36 not_measuarable dripping not_measuarable very low n.m. 2 0.042 0.57 2 0.042 0.57 2 n.m. 1.5 1.5 0.75	33.1 30.2 17.9 23.5 17.9 24.3 20.8 21.5 21.4 16 14.3 15.1 13.8 13.3 14.8 14.1 13 18.4 12.7 8.9 11.7 11.3 n.s. n.s. 13.3 15.2 15.3 15.1	7.3 7.29 7.22 7.67 7.65 7.64 8 8 8.2 8.03 7.67 8.82 7.51 7.1 7.32 7.8 7.46 7.1 7.32 7.8 7.46 7.1 7.72 6.71 7.47 7.23 6.78 6.71 6.98 n.s. 7.17 7.34 6.9 6.76	5.35 4.04 4.57 7.43 6.45 6.7 6.31 7.01 6.66 6.65 n.m. 7.53 6.77 6.1 6.81 6.81 6.58 4.78 8.43 8.47 4.07 7.33 7.5 7.25 7.34 n.s. 7 6.52 6.92 6.97	4351 1309 1686 471.1 991.2 709.5 591 431.3 504.5 344.8 2090 544.5 706 954.3 493.2 671 686.5 559.5 559.5 869.3 61.95 188 210 114.4 n.s. n.s. 122 126 172 123

Code	Name	Date (dd/mm/yy)	Type	X (m)	Y (m)	Alt. (m.a.s.l.)	Depth (m)	Flow rate (L/min.)	T (°C)	pН	O2 diss. (mg/L)	E.C. (µS/cm
LH33bis	zingo-El_Te	23/03/2018	spring	683140	2183042	2055	-	not_measuarable	22.5	7.49	n.m.	787
LH33*	zingo-El_Te	23/03/2018	spring	683146	2183042	2055	-	n.m.	21	7.5	n.m.	610
LH36	Conej o	18/03/2018	spring	693563	2159689	3406	-	0.71	9.6	6.98	7.43	84
LH38	caco-Ahuao	19/03/2018	spring	678612	2189214	1950	-	0.23	15.5	7.23	6.7	137
LH39	caco-Ahuao	19/03/2018	spring	678592	2189267	1905	-	not_measuarable	16.5	7.94	7.23	166
LH40	etel ca Las P	25/03/2018	spring	675386	2189176	1933	-	123	15.3	7.65	6.46	106.4
LH42	La Quinta	25/03/2018	spring	674704	2189494	1939	-	2.12	16	7.9	6.8	250.7
LH43	El Progreso	25/03/2018	spring	674627	2189327	1965	-	0.26	15.7	7.15	6.5	252.2
LH44bis	Agua Je	25/03/2018	spring	673429	2182765	2518	-	0.01	12.3	7.36	7.64	82.13
PER13	Perote_Na	18/03/2018	spring	694218	2158259	3645	-	0.85	8.1	7.07	7.56	3227
PER14	e_Perote_El	18/03/2018	spring	693642	2156814	3873	-	0.7	6.8	7.32	7.59	56
PER15	Perote_El	18/03/2018	spring	693740	2159327	3490	-	3	11	6.7	7.61	108
PER65	La libertad1	27/03/2018	spring	687870	2176388	2413	-	0.49	16.3	7.04	6.28	133.7
PER66	Descarga	27/03/2018	spring	692623	2175190	1936	-	high, not measurable	19.4	8.09	7.13	186.4
PER67	El l Uano	27/03/2018	spring	691984	2175163	2305	-	0.19	14.6	6.97	7.38	31.4
PER68	Las Minas2	27/03/2018	spring	692180	2176055	2101	-	n.m.	15.3	7.51	7.52	75.79
PER69	Las Minas3	27/03/2018	spring	691789	2175770	2278	-	n.m.	12.9	7.67	7.67	40.74
PER70	linas1 - Las	27/03/2018	spring	692700	2175366	1850	-	n.m.	15.7	7.87	8.15	224
PER83	Panaloya	25/03/2018	spring	673096	2188450	2128	-	high, not measurable	14.4	7.15	6.94	74.38
PER84	Canada	28/03/2018	spring	632731	2156590	2553	-	0.06	15	7.37	5.64	592.5
PER85	bellavista	28/03/2018	spring	628747	2160290	2935	-	0.05	12	7.83	6.49	338.9
PER45	una San Mig	23/03/2018	lagoon	653201	2175087	2341	-	not_measurable	24.3	9.83	0.6	7869
LH47	o29_reinjec	20/03/2018	_well_pozo	661884	2177843	2809	2807	-	27.7	7.53	4	1262
LH48	o38_reinjec	20/03/2018	well pozo	661899	2178151	2794	2202	-	28.8	7.53	2.56	1253
n m - not	measured							•				

n.k. = not known

n.a. = not analysed or sample collected just for isotopes analysis

n.s. = not sampled

Table A2 – O	Concentrati	on of chemi	cal species	determined	in collecte	d water samp	les (Los Hu	meros). Data	a are expres	sed in mg/L	. Charge bal	ance is also	included.		
Code	Na	к	Ca	Mg	Sr	Li	CI	HCO ₃	SO ₄	В	F	Br	NO ₃	SiO ₂	Charge balance (%)
						Sa	mpling 201	17							
LH1	45.8	5.12	39.8	17.3	0.3	1.40E-02	15.3	262	19.8	0.22	0.57	<0.05	19.6	60.1	0.41
LH2	29.2	5.8	29.7	12.2	0.19	6.00E-03	7.2	171	8.47	0.1	0.54	<0.05	36.1	59.7	1.56
LH3	32	3.2.2	72.8	8.3	0.24	1.30E-02	28.8	153	24.5	0.05	0.27	<0.05	127	51.4	-0.76
LH4	9.7	14.2	23	6.26	0.13	<5.00E-03	3.29	116	11.5	<0.01	<0.02	<0.05	8.99	54.1	1.5
LH15	9.6	2.43	36.3	3.6	0.1	<5.00E-03	1.92	146	3.44	<0.01	0.33	<0.05	6.6	62.3	-1.13
LH17	82.5	8.1	264	99.9	2.06	9.90E-02	87	799	445	1.4	0.75	<0.05	0.41	71.2	0.7
LH20	130	9.26	101	132	0.68	8.30E-02	208	211	101	1./2	1	0.52	<0.05	77.9	2.46
	20.4	5.2	21.5	32.5	0.09	< 3.00E-03	40.0	214	10.5	0.25	0.27	<0.05	5.0 <0.05	76.9	0.2
1450	20	11	22.0	21.2	0.08	9.20E-02	34.7	360	14.7	0.11	0.75	<0.05	0.05	70.8	0.02
1854	260	30	52.6	85.6	0.12	3.90E-02	208	903	21.8	4.05	0.5	0.05	<0.05	717	1.37
LH55	208	23.2	66.3	81.2	0.46	2.80E-01	193	824	32.1	3.58	0.74	0.38	<0.05	63.1	-0.03
LH5	11	3.73	13	4.63	0.06	<5.00E-03	2.2	79.3	4.73	<0.01	<0.02	<0.05	5.07	67.7	1.93
LH6	6.36	3.73	142	4.93	0.22	<5.00E-03	2.9	397	36.7	<0.01	0.3	<0.05	<0.05	38.3	3.26
LH7	8.5	4.57	112	5.22	0.24	<5.00E-03	3.88	365	20.7	<0.01	<0.02	<0.05	<0.05	41.2	-0.27
LH7 bis	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.c.
LH8	6.6	4	134	5.27	0.22	5.00E-03	2.6	421	16	<0.01	<0.02	<0.05	<0.05	44	1.43
LH9	12	5.82	20.5	8.16	0.12	<5.00E-03	3.57	113	17	<0.01	<0.02	<0.05	0.48	69.8	1.21
LH12	22.7	3.76	68	5.3	0.21	8.00E-03	3.48	278	10.7	<0.01	0.86	<0.05	0.88	33.2	-0.14
LH13	27.8	7.8	57.7	5.12	0.2	9.00E-03	3.46	261	10.9	<0.01	0.91	<0.05	<0.05	31.7	0.66
LH14	22.1	2.77	29.7	3.84	0.07	<5.00E-03	2.72	122	6.24	<0.01	0.37	<0.05	13.8	72.2	7.27
LH19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.c.
LH23	1.54	0.78	3.14	1.46	0.03	<5.00E-03	0.32	18.9	0.1	<0.01	<0.02	<0.05	<0.05	16	6.31
LH24	6	2.7	6.8	3.41	0.1	<5.00E-03	0.27	55.5	0.25	<0.01	<0.02	<0.05	<0.05	24.5	1.54
LH25	4.55	1.75	13	7.87	0.08	<5.00E-03	0.91	89.1	0.26	<0.01	<0.02	<0.05	<0.05	31.9	1.64
LH26	2.64	0.94	5.92	1.37	0.06	<5.00E-03	0.4	30.5	1.41	<0.01	0.1	<0.05	0.6	30.8	-0.68
LH27	3.13	0.96	6.4	1.5	0.09	<5.00E-03	0.61	30.5	3.35	<0.01	0.1	<0.05	0.24	28.6	0.73
LH3U	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.c.
11122	8.5	5.5	10.5	5.5	0.08	<5.00E-03	4.4	67.1	12.0	<0.01	<0.02	<0.05	10.1	64.2	1.45
LHSZ	7.0	5.5	15.6	5.54	0.11	<5.00E-05	4.9	01	10	0.01	0.10	KU.US	18.5	04.2	Charge
Code	Na	к	Ca	Mg	Sr	Li	CI	HCO ₃	SO4	в	F	Br	NO3	SiO ₂	balance (%)
Code LH33	Na 7.1	К 5.2.4	Ca 10.4	Mg 2.9	Sr 0.05	Li <5.00E-03	Cl 1.3	HCO3	SO4	B <0.01	F <0.02	Br <0.05	NO3	SiO2 71.1	balance (%) -1.25
Code LH33 LH34	Na 7.1 2.34	K 5.24 2.97	Ca 10.4 3	Mg 2.9 0.83	Sr 0.05 0.02	Li <5.00E-03 <5.00E-03	Cl 1.3 0.14	HCO3 54.9 18.9	SO4 5.15 1.72	B <0.01 <0.01	F <0.02 0.13	Br <0.05 <0.05	NO3 11.8 0.3	SiO ₂ 71.1 40.2	balance (%) -1.25 4.6
Code LH33 LH34 LH35	Na 7.1 2.34 7.02	К 5.24 2.97 4.06	Ca 10.4 3 7.16	Mg 2.9 0.83 3.53	Sr 0.05 0.02 0.04	Li <5.00E-03 <5.00E-03 <5.00E-03	Cl 1.3 0.14 1.56	HCO ₃ 54.9 18.9 54.3	SO4 5.15 1.72 3.8	B <0.01 <0.01 <0.01	F <0.02 0.13 <0.02	Br <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25	SiO ₂ 71.1 40.2 70.9	balance (%) -1.25 4.6 -0.36
Code LH33 LH34 LH35 LH36	Na 7.1 2.34 7.02 5.7	K 5.24 2.97 4.06 4.1	Ca 10.4 3 7.16 6.62	Mg 2.9 0.83 3.53 2.41	Sr 0.05 0.02 0.04 0.04	Li <5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03	Cl 1.3 0.14 1.56 0.2	HCO ₃ 54.9 18.9 54.3 51.9	SO4 5.15 1.72 3.8 1	B <0.01 <0.01 <0.01 <0.01	F <0.02 0.13 <0.02 <0.02	Br <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05	SiO ₂ 71.1 40.2 70.9 64	balance (%) -1.25 4.6 -0.36 0.34
Code LH33 LH34 LH35 LH36 LH37	Na 7.1 2.34 7.02 5.7 n.a.	K 5.24 2.97 4.06 4.1 n.a.	Ca 10.4 3 7.16 6.62 n.a.	Mg 2.9 0.83 3.53 2.41 n.a.	Sr 0.05 0.02 0.04 0.04 n.a.	Li <5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03 n.a.	Cl 1.3 0.14 1.56 0.2 n.a.	HCO ₃ 54.9 18.9 54.3 51.9 57.9	SO ₄ 5.15 1.72 3.8 1 n.a.	B <0.01 <0.01 <0.01 <0.01 n.a.	F <0.02 0.13 <0.02 <0.02 n.a.	Br <0.05 <0.05 <0.05 <0.05 n.a.	NO3 11.8 0.3 3.25 <0.05 n.a.	SiO ₂ 71.1 40.2 70.9 64 n.a.	balance (%) -1.25 4.6 -0.36 0.34 n.c.
Code LH33 LH34 LH35 LH36 LH37 LH38	Na 7.1 2.34 7.02 5.7 n.a. 7.4	K 5.24 2.97 4.06 4.1 n.a. 5.7	Ca 10.4 3 7.16 6.62 n.a. 8.9	Mg 2.9 0.83 3.53 2.41 n.a. 4.24	Sr 0.05 0.02 0.04 0.04 n.a. 0.07	Li <5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03 n.a. <5.00E-03	Cl 1.3 0.14 1.56 0.2 n.a. 3.2	HCO ₃ 54.9 18.9 54.3 51.9 57.9 48.8	SO4 5.15 1.72 3.8 1 n.a. 7.77	B <0.01 <0.01 <0.01 <0.01 n.a. <0.01	F <0.02 0.13 <0.02 <0.02 n.a. <0.02	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7	SiO ₂ 71.1 40.2 70.9 64 n.a. 69.3	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08	Li <.00E-03 <.00E-03 <.00E-03 <.00E-03 n.a. <.00E-03 <.00E-03 <.00E-03	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3	HCO ₃ 54.9 18.9 54.3 51.9 57.9 48.8 51.9	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3	B <0.01 <0.01 <0.01 <0.01 n.a. <0.01 <0.01	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2	SiO ₂ 71.1 40.2 70.9 64 n.a. 69.3 70.4	charge balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH39 LH40	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a.	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a.	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a.	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a.	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a.	Li <.5.00E-03 <.5.00E-03 <.5.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 n.a.	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a.	HCO ₃ 54.9 54.3 51.9 57.9 48.8 51.9 57.9 57.9	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a.	B <0.01 <0.01 <0.01 <0.01 n.a. <0.01 <0.01 n.a.	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02 <0.02 n.a.	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 n.a.	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a.	SiO ₂ 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a.	charge balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c.
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03	Li <5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03 n.a. <1.68E-02	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88	HCO ₃ 54.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98	B <0.01 <0.01 <0.01 <0.01 n.a. <0.01 <0.01 n.a. <0.01 n.a. <0.01	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02 n.a. 0.02 n.a.	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 n.a. <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8	SiO ₂ 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1	charge balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH42	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5	Sr 0.05 0.02 0.04 0.04 n.a. 0.08 n.a. 0.08 n.a. 0.03 0.11	Li <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 n.a. 1.68E-02 <.00E-03	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 1.1	HCO ₃ 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.99	B <0.01 <0.01 <0.01 <0.01 n.a. <0.01 <0.01 n.a. <0.01	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02 n.a. 0.27 <0.02	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 n.a. <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH43	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13	Li <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 n.a. 1.68E-02 <.00E-03 6.65E-03	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.28	HCO ₃ 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2	B <0.01 <0.01 <0.01 <0.01 n.a. <0.01 <0.01 n.a. <0.01 <0.01 <0.01	F <0.02 0.13 <0.02 <0.02 n.a. 0.02 <0.02 n.a. 0.27 <0.02 <0.02	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH43 LH44 LH44	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.55	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03	Li <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24	HCO ₃ 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.0	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	F <0.02 0.13 <0.02 <0.02 n.a. 0.02 <0.02 n.a. 0.27 <0.02 <0.02 <0.02	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05	SiO ₂ 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH43 LH44 LH44bis IH45	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03 0.11	Li <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87	HCO ₃ 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 0.59 n.a. 1.85	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	F <0.02 0.13 <0.02 <0.02 n.a. 0.02 <0.02 n.a. 0.27 <0.02 <0.02 <0.02 <0.02 n.a. <0.02 n.a.	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH49	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1 0	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03	Li <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 1.70E-02	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47	HCO ₃ 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.5	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 122	F <0.02 0.13 <0.02 <0.02 n.a. 0.02 <0.02 n.a. 0.27 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 n.a. 0.27 0.02 <0.02 0.13	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.93	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 45	balance balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH49 LH53	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.44	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 11.8	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.04 0.03 0.1	Li <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 1.70E-02 <.00E-03	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83	HCO ₃ 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.22 <0.01	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02 n.a. 0.27 <0.02 <0.02 <0.02 <0.02 n.a. <0.02 0.02 0.46 <0.02	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.93 1.43	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH49 LH53 LH10	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 11.8 53.3	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.04 0.03 0.1 0.03 0.1 0.33	Li <5.00E-03 <5.00E-03 <5.00E-03 <n.a. <5.00E-03 <n.a. <5.00E-03 <n.a. <1.68E-02 <5.00E-03 <6.55E-03 <6.55E-03 <0.0E-03 <1.07E-02 <5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03 <0.0E-02 <5.00E-03 <</n.a. </n.a. </n.a. 	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.22 <0.01 <0.01	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02 n.a. 0.27 <0.02 <0.02 <0.02 <0.02 <0.02 n.a. <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.0	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.93 1.43 <0.05	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 n.a. 64 45.8 27.6	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH49 LH53 LH10 LH11	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 2.3.6	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 11.8 53.3 63.2	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03 0.03 0.03 0.1 0.03 0.1 0.33 0.26	Li <5.00E-03 <5.00E-03 <5.00E-03 <1.00E-03 <5.00E-03 <	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.22 <0.01 <0.01 <0.01	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02 n.a. 0.27 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.93 1.43 <0.05 <0.05	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH45 LH53 LH10 LH11 LH16	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 2.3.6 10	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 11.8 53.3 63.2 36.6	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.04 0.03 0.1 0.03 0.1 0.33 0.26 0.1	Li <5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03 <	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.87	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.22 <0.01 <0.01 <0.01 <0.01 <0.01	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02 n.a. 0.27 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.93 1.43 <0.05 <0.05 6.8	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.5
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH49 LH53 LH10 LH11 LH16 LH29	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 2.3.6 10 5.6	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5 3.89	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 11.8 53.3 63.2 36.6 19.1	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6 2.7	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03 0.3 0.03 0.1 0.33 0.26 0.1 0.21	Li <5.00E-03 <5.00E-03 <5.00E-03 <1.00E-03 <5.00E-03 <	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.87 3.84	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140 67.1	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6 10	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.22 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02 n.a. 0.27 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.	Br <0.05 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.93 1.43 <0.05 <0.05 6.8 10.6	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6 31.5	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.5 -2.11
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH45 LH49 LH53 LH10 LH11 LH16 LH29 LH52	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 2.3.6 10 5.6 n.a.	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5 3.89 n.a.	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 11.8 53.3 63.2 36.6 19.1 n.a.	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6 2.7 n.a.	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03 0.1 0.03 0.1 0.33 0.26 0.1 0.21 n.a.	Li <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.87 3.84 n.a.	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140 67.1 57.9	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6 10 n.a.	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.22 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <	Br <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.43 <0.05 <0.05 6.8 10.6 n.a.	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6 31.5 n.a.	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.5 -2.11 n.c.
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH45 LH49 LH53 LH10 LH11 LH16 LH29 LH52 LH18	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 2.3.6 10 5.6 n.a. 2597	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5 3.89 n.a. 227	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 14.3 14.3 53.3 63.2 36.6 19.1 n.a. 8.15	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6 2.7 n.a. 4.32	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.04 0.03 0.1 0.33 0.26 0.1 0.21 n.a.	Li <5.00E-03 	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.87 3.84 n.a. 3.24 n.a. 3.92 3.84 5.92 3	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140 67.1 57.9 2623	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6 10 n.a. 993	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.22 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02 n.a. 0.27 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.	Br <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.43 <0.05 <0.05 6.8 10.6 n.a. <0.05	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6 31.5 n.a. 0.41	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.5 -2.11 n.c.
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH43 LH44 LH44bis LH45 LH45 LH45 LH45 LH49 LH53 LH10 LH11 LH16 LH29 LH52 LH18 LH22	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 2.3.6 10 5.6 n.a. 2.597 87	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5 3.89 n.a. 227 7.8	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 14.3 14.3 53.3 63.2 36.6 19.1 n.a. 8.15 13.3	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6 2.7 n.a. 4.32 63.9	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.04 0.03 0.1 0.33 0.26 0.1 0.21 n.a. 0.04 0.04 0.04	Li <5.00E-03 	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.83 1.67 4.47 1.83 3.64 n.a. 3.24 1.56 1.57 1.57 1.83 1.67 1.83 1.67 1.87 3.84 1.87 3.84 1.87 3.84 1.87 3.82 1.87 3.84 1.87 3.85 1.87 3.85 1.87 3.85 1.87 3.85 1.87 3.85 1.87 3.85 1.87 3.85 1.87 3.85 1.87 3.85 1.87 3.85 1.87 3.85 1.87 3.85 1.87 1	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140 67.1 57.9 2623 415	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6 10 n.a. 993 18.5	B <0.01 <0.01 <0.01 <0.01 n.a. <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.22 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.05 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <	Br <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.43 <0.05 <0.05 6.8 10.6 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6 31.5 n.a. 0.41 10.3	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.5 -2.11 n.c. -0.41 1.37
Code LH33 LH34 LH35 LH36 LH37 LH38 LH39 LH40 LH41 LH42 LH42 LH43 LH44 LH44bis LH45 LH45 LH45 LH49 LH53 LH10 LH11 LH16 LH29 LH52 LH18 LH22 LH18	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 2.3.6 10 5.6 n.a. 2.597 87 34.6	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5 3.89 n.a. 227 7.8 12.3	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 11.8 53.3 63.2 36.6 19.1 n.a. 8.15 13.3 216	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6 2.7 n.a. 4.32 63.9 58.3	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03 0.1 0.03 0.1 0.33 0.26 0.1 0.21 n.a. 0.04 0.06 6.32	Li <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03 <.00E-03	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.83 1.67 4.47 1.83 3.64 n.a. 3.24 1.56 1.57 1.83 1.67 1.83 1.67 1.83 1.67 1.83 1.67 1.87 3.84 1.87 3.84 1.87 3.84 1.87 3.84 1.87 3.84 1.82 3.27 3.84 1.36 1.57 3.84 1.36 1.57 1.87 3.84 1.32 1.57 1.87 3.84 1.32 1.57 1.87 1	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140 67.1 57.9 2623 415 238	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6 10 n.a. 993 18.5 635	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.0	F <0.02 0.13 <0.02 <0.02 n.a. <0.02 <0.02 n.a. 0.27 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 0.46 <0.02 <0.02 0.46 <0.02 <0.02 0.46 <0.02 <0.02 0.46 <0.02 <0.02 0.46 <0.02 <0.02 0.46 <0.02 0.46 <0.02 0.46 <0.02 0.46 <0.02 0.46 <0.02 0.46 <0.02 0.46 <0.02 0.46 0.02 0.46 0.02 0.46 0.02 0.02 0.46 0.02 0.46 0.02 0.02 0.02 0.46 0.02 0.05 0.55 0.5	Br <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.43 <0.05 <0.05 6.8 10.6 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6 31.5 n.a. 0.41 10.3 41.9	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.5 -2.11 n.c. -0.41 1.37 -2.64
Code UH33 UH34 UH35 UH36 UH37 UH38 UH39 UH40 UH41 UH42 UH43 UH44bis UH45 UH45 UH45 UH45 UH45 UH45 UH45 UH45	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 2.3.6 10 5.6 n.a. 2.597 87 34.6 95.5	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5 3.89 n.a. 227 7.8 12.3 14.7	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 14.3 14.3 14.3 14.3 53.3 63.2 36.6 19.1 n.a. 8.15 13.3 216 191	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6 2.7 n.a. 4.32 63.9 58.3 2.65	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03 0.1 0.03 0.1 0.33 0.26 0.1 0.21 n.a. 0.04 0.04 0.06 6.32 0.6	Li <5.00E-03 <5.00E-03 <5.00E-03 <	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.83 1.67 4.47 1.83 3.64 1.87 3.84 1.3 3.62 4.1 1.87 3.84 1.3 3.67 1.87 3.84 1.3 3.61 1.67 1.87 3.84 1.3 3.61 1.67 1.87 3.84 1.3 3.61 1.67 1.87 3.84 1.67 1.87 3.84 1.67 1.87 3.84 1.67 1.87 3.84 1.67 1.87 3.84 1.67 1.87 3.84 1.67 1.87 3.84 1.67 1.67 1.87 3.84 1.67 1.77 1.67 1	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140 67.1 57.9 2623 415 238 793	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6 10 n.a. 993 18.5 635 27.3	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.0	F <0.02	Br <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.43 <0.05 <0.05 6.8 10.6 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6 31.5 n.a. 0.41 10.3 41.9 42.4	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.5 -2.11 n.c. -0.41 1.37 -2.64 -1.51
Code UH33 UH34 UH35 UH36 UH37 UH38 UH39 UH40 UH41 UH42 UH43 UH44bis UH45 UH45 UH45 UH45 UH45 UH45 UH45 UH45	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 23.6 10 5.6 n.a. 2597 87 34.6 95.5 95	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5 3.89 n.a. 227 7.8 12.3 14.7 13	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 14.3 14.3 14.3 53.3 63.2 36.6 19.1 n.a. 8.15 13.3 216 191 1.77	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6 2.7 n.a. 4.32 63.9 58.3 2.6.5 0.05	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03 0.1 0.03 0.1 0.33 0.26 0.1 0.21 n.a. 0.04 0.04 0.06 6.32 0.6 0.03	Li <5.00E-03 <5.00E-03 <5.00E-03 <	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.83 1.67 4.47 1.83 3.64 n.a. 3.24 1.56 1.57 1.83 1.67 1.83 1.67 1.87 3.84 1.87 3.84 1.87 3.84 1.87 3.84 1.32 3.65 1.11 3.22 1.11 3.24 1.11 1.57 1.87 3.84 1.11 1.57 1.87 3.84 1.11 1.57 1.11 3.84 1.11 1.57 1.11 3.84 1.11 1.57 1.11 3.84 1.11 1.57 1.11 3.84 1.11 1.57 1.11 3.84 1.11 1.57 1.11 1.57 1	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140 67.1 57.9 2623 415 238 793 110	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6 10 n.a. 993 18.5 635 27.3 270	B <0.01 <0.01 <0.01 <0.01 n.a. <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.22 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 3.0 3.3 3.1 330	F <0.02	Br <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.43 <0.05 <0.05 6.8 10.6 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6 31.5 n.a. 0.41 10.3 41.9 42.4 110	balance balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.55 -2.11 n.c. -0.41 1.37 -2.64 -1.51 n.c.
Code UH33 UH34 UH35 UH36 UH37 UH38 UH39 UH40 UH41 UH42 UH43 UH44bis UH45 UH45 UH45 UH45 UH45 UH45 UH45 UH45	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 23.6 10 5.6 n.a. 2597 87 34.6 95.5 95 107	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5 3.89 n.a. 227 7.8 12.3 14.7 13 14.5	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 14.3 14.3 14.3 63.2 36.6 19.1 n.a. 8.15 13.3 216 191 1.77 1.73	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6 2.7 n.a. 432 63.9 58.3 2.6.5 0.05 0.05	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03 0.1 0.03 0.1 0.33 0.26 0.1 0.21 n.a. 0.04 0.05	Li <5.00E-03 <5.00E-03 <5.00E-03 <	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.83 1.67 4.47 1.83 3.64 n.a. 3.24 1.56 1.57 1.83 1.67 1.83 1.67 1.83 1.67 1.87 3.84 1.87 3.84 1.32 1.57 1.87 3.84 1.32 1.11 1.32 1.67 1.87 3.84 1.11 1.32 1.67 1.87 1.67 1.11 1.42 1.11 1.42 1.11 1.42 1.11 1.42 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1.11 1.42 1.40 1	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140 67.1 57.9 2623 415 238 793 110 134	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6 10 n.a. 993 18.5 635 27.3 270 269	B <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.	F <0.02	Br <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.43 <0.05 <0.05 6.8 10.6 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6 31.5 n.a. 0.41 10.3 41.9 42.4 110 115	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.5 -2.11 n.c. -0.41 1.37 -2.64 -1.51 n.c. n.c.
Code UH33 UH34 UH35 UH36 UH37 UH38 UH39 UH40 UH41 UH42 UH43 UH44bis UH45 UH45 UH45 UH45 UH45 UH45 UH45 UH45	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 23.6 10 5.6 n.a. 2597 87 34.6 95.5 95 107	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5 3.89 n.a. 227 7.8 12.3 14.7 13 14.5	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 14.3 14.3 63.2 36.6 19.1 n.a. 8.15 13.3 216 191 1.77 1.73	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6 2.7 n.a. 432 63.9 58.3 26.5 0.05	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03 0.1 0.33 0.26 0.1 0.21 n.a. 0.04 0.03 0.21 n.a. 0.04 0.03 0.1 0.21 0.21 0.21 0.21 0.21 0.21 0.21	Li <5.00E-03 <5.00E-03 <5.00E-03 <	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.83 1.67 4.47 1.83 3.64 1.87 3.84 1.32 3.84 1.67 4.25 1.11 3.42 4.11 3.42 4.11 3.22 4.11 3.22 4.11 1.87 3.84 1.11 3.22 4.11 3.22 4.11 3.84 1.11 3.22 4.11 3.22 4.11 3.84 1.11 3.22 4.111 3.22 4.11 5.25	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140 67.1 57.9 2623 415 238 793 110 134 8	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6 10 n.a. 993 18.5 635 27.3 270 269	B <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03	F <0.02	Br <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.43 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6 31.5 n.a. 0.41 10.3 41.9 42.4 110 115	balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.5 -2.11 n.c. -0.41 1.37 -2.64 -1.51 n.c. n.c.
Code UH33 UH34 UH35 UH36 UH37 UH38 UH39 UH40 UH41 UH42 UH43 UH44 UH44bis UH45 UH45 UH45 UH45 UH45 UH45 UH45 UH45	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 23.6 10 5.6 n.a. 2597 87 34.6 95.5 95 107	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5 3.89 n.a. 227 7.8 12.3 14.7 13 14.5	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 14.3 14.3 63.2 36.6 19.1 n.a. 8.15 13.3 216 191 1.77 1.73	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6 2.7 n.a. 432 63.9 58.3 26.5 0.05 0.05	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03 0.1 0.33 0.26 0.1 0.21 n.a. 0.04 0.03 0.21 n.a. 0.04 0.05	Li <5.00E-03 <5.00E-03 <5.00E-03 n.a. <5.00E-03 <	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.83 1.67 4.47 1.83 3.84 1.67 4.47 1.87 3.84 1.67 1.87 3.84 1.67 1.87 3.84 1.67 1.87 3.84 1.67 1.13 3.62 1.02 1	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140 67.1 57.9 2623 415 238 793 110 134 8 8	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6 10 n.a. 993 18.5 635 27.3 270 269	B <0.01 <0.01 <0.01 <0.01 n.a. <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03	F <0.02	Br <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.93 1.43 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6 31.5 n.a. 0.41 10.3 41.9 42.4 110 115	balance balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.55 -2.11 n.c. -0.41 1.37 -2.64 -1.51 n.c. n.c. 1.73
Code UH33 UH34 UH35 UH36 UH37 UH38 UH39 UH40 UH41 UH42 UH43 UH44 UH44bis UH45 UH45 UH45 UH45 UH45 UH45 UH45 UH45	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 2.3.6 10 5.6 n.a. 2597 87 34.6 95.5 95 107 31.8 39.3	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5 3.89 n.a. 227 7.8 12.3 14.7 13 14.5	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 14.3 14.3 14.3 14.3 63.2 36.6 19.1 n.a. 8.15 13.3 216 191 1.77 1.73 35 78.5	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6 2.7 n.a. 432 63.9 58.3 26.5 0.05 0.05	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03 0.1 0.33 0.26 0.1 0.21 n.a. 0.04 0.03 0.21 n.a. 0.04 0.05	Li <5.00E-03 <5.00E-03 <5.00E-03 <	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.83 1.67 4.47 1.83 3.64 n.a. 3.27 4.1 1.56 1.57 1.83 1.67 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.67 1.11 1.34 1.07 1.11 1.34 1.07 1.11 1.34 1.07 1.07 1.11 1.34 1.07 1.07 1.13 1.67 1.11 1.34 1.07 1.13 1.67 1.11 1.34 1.07 1.11 1.34 1.07 1.11 1.34 1.07 1.07 1.11 1.34 1.07 1.	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140 67.1 57.9 2623 415 238 793 110 134 8 8 8	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6 10 n.a. 993 18.5 635 27.3 270 269	B <0.01 <0.01 <0.01 <0.01 n.a. <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 3.1 330 360	F <0.02	Br <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.93 1.43 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6 31.5 n.a. 0.41 10.3 41.9 42.4 110 115	balance balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.55 0.08 1.4 1.55 -2.11 n.c. -0.41 1.37 -2.64 -1.51 n.c. n.c. 1.73 -1.42
Code UH33 UH34 UH35 UH36 UH37 UH38 UH39 UH40 UH41 UH42 UH43 UH44bis UH45 UH45 UH45 UH45 UH45 UH45 UH45 UH45	Na 7.1 2.34 7.02 5.7 n.a. 7.4 8.24 n.a. 10.4 10.3 9.7 4.56 n.a. 8.5 9.73 9.74 5.39 23.6 10 5.6 n.a. 2597 87 34.6 95.5 95 107 31.8 39.3 84.6	K 5.24 2.97 4.06 4.1 n.a. 5.7 6.41 n.a. 1.8 7.67 6.4 2.97 n.a. 2.7 1.9 3.56 2.13 6.28 2.5 3.89 n.a. 227 7.8 12.3 14.7 13 14.5 5.7 5.2 9.18	Ca 10.4 3 7.16 6.62 n.a. 8.9 9.5 n.a. 6.55 18.4 18.5 4.35 n.a. 8.32 14.3 15.5 18.4 19.1 1.7 1.73 35 78.5 290	Mg 2.9 0.83 3.53 2.41 n.a. 4.24 4.5 n.a. 2.42 8.5 9.3 1.6 n.a. 3.93 1.75 7.8 6.5 7.7 3.6 2.7 n.a. 432 63.9 58.3 26.5 0.05 0.05 0.05	Sr 0.05 0.02 0.04 0.04 n.a. 0.07 0.08 n.a. 0.03 0.11 0.13 0.03 n.a. 0.03 0.1 0.33 0.26 0.1 0.21 n.a. 0.04 0.03 0.22 0.06 0.03 0.03 0.03	Li <5.00E-03 <5.00E-03 <5.00E-03 <	Cl 1.3 0.14 1.56 0.2 n.a. 3.2 4.3 n.a. 0.88 3.92 4.1 0.24 n.a. 0.87 0.47 1.83 1.67 4.47 1.83 1.67 4.47 1.83 3.67 4.47 1.87 3.84 1.67 1.87 3.84 1.67 1.87 3.84 1.67 1.13 3.67 1.13 3.67 1.13 3.67 1.13 3.72 1.13 3.72 1.13 3.72 1.13 3.72 1.13 3.72 1.13 3.72 1.13 3.72 1.13 3.72 1.13 3.72 1.13 3.72 1.13 3.72 1.13 3.72 1.13 3.72 1.13 3.72 1.17 3.74 1.17 3.73 8.6.1 1.17 3.7 3.77 1.77 3.77 1.77 3.77 1.77 3.77 1.77 3	HCO3 54.9 18.9 54.3 51.9 57.9 48.8 51.9 57.9 48.8 88.5 104 36.6 57.9 64.1 76.3 952 168 278 140 67.1 57.9 2623 415 2.38 793 110 134 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SO4 5.15 1.72 3.8 1 n.a. 7.77 5.3 n.a. 2.98 18.9 20.2 0.59 n.a. 1.85 1.6 2.15 33 6.1 3.6 10 n.a. 993 18.5 6.35 27.3 270 269	B <0.01 <0.01 <0.01 <0.01 n.a. <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03	F <0.02	Br <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NO3 11.8 0.3 3.25 <0.05 n.a. 12.7 14.2 n.a. 2.8 13.5 14.5 <0.05 n.a. 2.83 1.43 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	SiO2 71.1 40.2 70.9 64 n.a. 69.3 70.4 n.a. 47.1 67.6 61.2 50.1 n.a. 60.1 46 45.8 27.6 40 57.6 31.5 n.a. 0.41 10.3 41.9 42.4 110 115 63.3 44.8 67.9	balance balance (%) -1.25 4.6 -0.36 0.34 n.c. 0.21 2.16 n.c. 4.76 2.07 -4.07 0.38 n.c. 0.84 -0.74 1.55 0.08 1.4 1.55 0.08 1.4 1.55 -2.11 n.c. -0.41 1.37 -2.64 -1.51 n.c. n.c. 1.73 -1.42 0.13

Code	Na	к	Ca	Mg	Sr	Li	CI	HCO3	SO4	В	F	Br	NO ₃	Si O ₂	Charge balance (%)
LH46	27	6.01	27.8	9.6	0.07	3.90E-02	1.05	192	8.3	0.13	0.7	n.a.	0.53	80.7	0.87
LH46_bis	44.1	8.14	35.9	14.3	0.1	5.40E-02	1.22	288	14.8	0.24	0.68	n.a.	0.37	103	-0.84
LH50	83.9	13	21.2	18.6	0.11	8.50E-02	24	324	13.5	0.85	0.45	n.a.	5.5	75.1	0.79
LH50_bis	65.1	10.9	34.6	24.1	0.18	7.80E-02	41.6	327	9.9	0.92	0.38	n.a.	9.37	57	-1.27
LH54	236	29.1	51.7	80.3	0.49	3.98E-01	203	870	20.1	4.24	0.59	n.a.	6	71	-1.38
LH55	196	22.5	64.5	78.7	0.53	2.84E-01	172	834	17	3.48	0.35	n.a.	2.7	69.5	-0.95
LH61	111	14.1	43.2	31.3	0.25	1.51E-01	59.4	458	17.7	2.56	0.63	n.a.	5.1	90.5	0.72
PER27	120	16.7	28.09	31.4	0.18	1.04E-01	44.5	480	16.9	1.79	0.6	n.a.	<0.05	75	n.c.
PER30	48.5	8.15	44.7	24.4	0.25	7.50E-02	57	276	4.35	2.3	0.16	n.a.	2	52.7	n.c.
PER31	130	18.4	36.6	32.4	0.19	1.80E-01	51.1	508	18.5	2.13	<0.02	n.a.	7.6	105	n.c.
PER36	47	5.2	39	43	0.39	5.00E-03	33.6	354	20.5	0.37	0.16	n.a.	8.5	61.6	n.c.
PER37	40.3	5.07	32.6	44.1	0.33	2.00E-03	34.2	330	21.3	0.37	0.15	n.a.	9.79	56.2	n.c.
PER38	53.1	6.02	65.9	59.5	0.67	4.60E-03	86.2	420	48.9	0.46	0.2	n.a.	7.3	n.a.	-0.01
PER39	24	5.2	18.9	11.2	0.11	1.70E-02	14.9	147	4.8	0.21	0.25	n.a.	2.9	58.1	1.73
PER40	27.5	6.1	24.7	14.8	0.13	2.80E-02	17.5	192	4.62	0.3	0.16	n.a.	1.93	53.1	0.97
PER42	58.8	5.11	48.8	36.2	0.36	2.60E-02	20.4	381	46.2	0.13	0.38	n.a.	6.9	66	1.65
PER43	100	9.5	186	164	1.43	8.50E-02	96	903	430	7.58	0.33	n.a.	4.5	71.7	0.5
PER44	54.3	4.19	39.1	31.1	0.32	2.40E-02	18.6	306	28.7	0.16	0.71	n.a.	31.6	60.1	0.39
PER47	42.9	4	52.1	31.4	0.32	1.70E-02	36.9	285	24.5	0.34	0.32	n.a.	39.6	51.9	0.23
PER48	63.3	6.11	120	61.8	0.95	1.39E-01	110	624	9.99	1.1	0.35	n.a.	<0.05	74.9	-0.31
PER49	32.4	2.4	45.2	26.2	0.26	2.70E-02	31.2	273	11.6	0.32	0.35	n.a.	12.4	52.7	0.56
PER51	861	47	67	178	2.1	2.02E+00	1550	567	214	28.3	0.25	n.a.	3	82.2	1.09
PER52	74	6.5	59	38.3	0.62	3.20E-02	44	372	45	0.27	0.77	n.a.	54	77.5	1.57
PER53	69	3.35	52.6	46.4	0.39	1.40E-02	52.7	372	62.2	0.57	0.41	n.a.	20	58.2	1.43
PER54	78.2	12.9	50.8	36.4	0.24	1.11E-01	60.2	438	6.96	1.21	0.44	n.a.	2.54	63.8	0.98
PER55	579	64.9	97.2	199	0.78	8.94E-01	476	2028	34.9	2.44	0.73	n.a.	2.3	81.3	-0.02
PER56	145	20.9	41.4	38.1	0.28	1.95E-01	68.7	582	17.8	2.29	0.6	n.a.	5.54	99.5	-0.89
PER57	161	20.1	48.9	46.6	0.31	2.27E-01	101	636	18.6	2.72	0.59	n.a.	5.67	92.8	1.07
PER58	23.5	6.5	20.5	10.8	0.1	2.30E-02	12.6	162	5.3	0.16	0.28	n.a.	7.5	50.2	1.12
PER59	78.1	11.5	39	27.5	0.21	9.40E-02	48.8	402	9.9	1.19	0.32	n.a.	4.1	73.9	0.33
PER60	40.2	7.6	29.9	17.9	0.17	2.90E-02	25.5	237	7.22	0.44	0.2	n.a.	2.81	56.8	0.06
PER71	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	-0.33
Code	Na	к	Ca	Mg	Sr	Li	CI	HCO ₃	SO4	в	F	Br	NO ₃	Si O ₂	Charge balance (%)
Code PER72	Na n.a.	K n.a.	Ca n.a.	Mg n.a.	Sr n.a.	Li n.a.	Cl n.a.	HCO3	SO₄ n.a.	B n.a.	F n.a.	Br n.a.	NO₃ n.a.	Si O ₂ n.a.	Charge balance (%) n.c.
Code PER72 PER73	Na n.a. n.a.	K n.a. n.a.	Ca n.a. n.a.	Mg n.a. n.a.	Sr n.a. n.a.	Li n.a. n.a.	Cl n.a. n.a.	HCO₃ n.a. n.a.	SO4 n.a. n.a.	B n.a. n.a.	F n.a. n.a.	Br n.a. n.a.	NO3 n.a. n.a.	Si O ₂ n.a. n.a.	Charge balance (%) n.c. n.c.
Code PER72 PER73 PER74	Na n.a. n.a. n.a.	K n.a. n.a. n.a.	Ca n.a. n.a. n.a.	Mg n.a. n.a.	Sr n.a. n.a. n.a.	Li n.a. n.a.	Cl n.a. n.a. n.a.	HCO ₃ n.a. n.a. n.a.	SO4 n.a. n.a.	B n.a. n.a. n.a.	F n.a. n.a. n.a.	Br n.a. n.a. n.a.	NO3 n.a. n.a. n.a.	Si O ₂ n.a. n.a. n.a.	Charge balance (%) n.c. n.c. n.c.
Code PER72 PER73 PER74 PER78	Na n.a. n.a. n.a. 414	K n.a. n.a. 49.7	Ca n.a. n.a. 18.6	Mg n.a. n.a. 19	Sr n.a. n.a. 0.2	Li n.a. n.a. 4.39E-01	Cl n.a. n.a. 235	HCO ₃ n.a. n.a. n.a. 711	SO4 n.a. n.a. n.a. 110	B n.a. n.a. 3	F n.a. n.a. n.a. 1.1	Br n.a. n.a. n.a. n.a.	NO3 n.a. n.a. 51.2	Si O ₂ n.a. n.a. 46.6	Charge balance (%) n.c. n.c. n.c. 0.28
Code PER72 PER73 PER74 PER78 LH5	Na n.a. n.a. 414 11.6	K n.a. n.a. 49.7 4.53	Ca n.a. n.a. 18.6 15.2	Mg n.a. n.a. 19 5.2	Sr n.a. n.a. 0.2 0.07	Li n.a. n.a. 4.39E-01 3.00E-03	Cl n.a. n.a. 235 1.6	HCO ₃ n.a. n.a. 711 96	SO ₄ n.a. n.a. 110 5.2	B n.a. n.a. 3 0.01	F n.a. n.a. 1.1 0.33	Br n.a. n.a. n.a. n.a. n.a.	NO ₃ n.a. n.a. 51.2 6.2	Si O ₂ n.a. n.a. 46.6 54.7	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69
Code PER72 PER73 PER74 PER78 LH5 LH6	Na n.a. n.a. 11.6 6.62	K n.a. n.a. 49.7 4.53 3.8	Ca n.a. n.a. 18.6 15.2 131	Mg n.a. n.a. 19 5.2 4.5	Sr n.a. n.a. 0.2 0.07 0.21	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03	Cl n.a. n.a. 235 1.6 1.2	HCO ₃ n.a. n.a. 711 96 390	SO4 n.a. n.a. 110 5.2 30.1	B n.a. n.a. 3 0.01 0.02	F n.a. n.a. 1.1 0.33 0.41	Br n.a. n.a. n.a. n.a. n.a. n.a.	NO3 n.a. n.a. 51.2 6.2 0.15	Si O ₂ n.a. n.a. 46.6 54.7 60	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81
Code PER72 PER73 PER74 PER78 LH5 LH6 LH6bis	Na n.a. n.a. 414 11.6 6.62 6.72	K n.a. n.a. 49.7 4.53 3.8 3.9	Ca n.a. n.a. 18.6 15.2 131 123	Mg n.a. n.a. 19 5.2 4.5 4.4	Sr n.a. n.a. 0.2 0.07 0.21 0.21	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3	HCO ₃ n.a. n.a. 711 96 390 387	SO4 n.a. n.a. 110 5.2 30.1 30.7	B n.a. n.a. 3 0.01 0.02 0.02	F n.a. n.a. 1.1 0.33 0.41 0.2	Br n.a. n.a. n.a. n.a. n.a. n.a. n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05	Si O ₂ n.a. n.a. 46.6 54.7 60 36.2	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7	Na n.a. n.a. 414 11.6 6.62 6.72 8.36	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46	Ca n.a. n.a. 18.6 15.2 131 123 110	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94	HCO ₃ n.a. n.a. 711 96 390 387 342	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6	B n.a. n.a. 3 0.01 0.02 0.02 0.02	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23	Br n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5	Si O ₂ n.a. n.a. 46.6 54.7 60 36.2 34.2	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7 UH7*	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1	Ca n.a. n.a. 18.6 15.2 131 123 110 98	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 <5.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59	HCO ₃ n.a. n.a. 711 96 390 387 342 303	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16	Br n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5 <0.05	Si O ₂ n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7 UH7* UH8	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a.	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a.	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a.	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a.	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a.	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 <5.00E-03 n.a.	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a.	HCO ₃ n.a. n.a. 711 96 390 387 342 303 57.9	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a.	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a.	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a.	Br n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5 <0.05 n.a.	Si O ₂ n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a.	Charge balance (%) n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c.
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7 UH7* UH8 UH8bis	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 2.00E-03 2.00E-03 c.5.00E-03 n.a.	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35	HCO ₃ n.a. n.a. 711 96 390 387 342 303 57.9 312	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16	Br n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5 <0.05 n.a. <0.05	Si O ₂ n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7	Charge balance (%) n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7 UH7* UH8 UH8bis UH9	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 c.5.00E-03 n.a. <5.00E-03 4.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.01	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15	Br n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5 <0.05 n.a. <0.05 0.5 <0.05 0.5 <0.05 0.5 <0.05 0.5 <0.05 0.5 <0.05 0.5 <0.05 0.5 <0.05 0.5 <0.05 0.5 <0.05 0.5 <0.05 0.5 <0.05 0.5 <0.05 0.5 <0.05 0.5 <0.05 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Si O ₂ n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60	Charge balance (%) n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7 UH7* UH8 UH8bis UH9 UH12	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 c.5.00E-03 n.a. <5.00E-03 4.00E-03 1.50E-02	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a.	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.03	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62	Br n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5 <0.05 n.a. <0.05 0.05 2.2	SiO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55	Charge balance (%) n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7 UH7* UH8 UH8bis UH9 UH12 UH14bis	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 4.00E-03 4.00E-03 1.50E-02 5.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.03 <0.01	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08	Br n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 2.2 0.7	SiO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67	Charge balance (%) n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7 UH7* UH8 UH8bis UH9 UH12 UH14bis UH23	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 4.00E-03 1.50E-02 5.00E-03 4.5.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42	HCO ₃ n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24	SO ₄ n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 0.03 <0.01 <0.01 0.03	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02	Br n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 <0.05 <0.05 n.a. <0.05 <0.05 <0.05 2.2 0.7 <0.05	SiO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7 UH7* UH8 UH8bis UH9 UH12 UH14bis UH23 UH24	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 4.00E-03 1.50E-02 5.00E-03 4.5.00E-03 4.5.00E-03 4.5.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55	HCO ₃ n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03	Br n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.	SiO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22
Code PER72 PER73 PER74 PER78 UH5 UH5 UH6 UH6 UH7 UH7* UH7* UH8 UH8 UH9 UH12 UH14bis UH23 UH24 UH25	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1 0.08	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 4.00E-03 1.50E-02 5.00E-03 4.5.00E-03 4.5.00E-03 4.5.00E-03 4.5.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8	HCO ₃ n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8	SO ₄ n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.01 <0.02 <0.02 <0.02 <0.02 <0.01 <0.02 <0.02 <0.02 <0.01 <0.02 <0.02 <0.02 <0.01 <0.02 <0.01 <0.02 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.01 <0.02 <0.01 <0.02 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07	Br n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.	SiO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7 UH7* UH8 UH8bis UH9 UH12 UH14bis UH23 UH24 UH25 UH26	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a.	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a.	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a.	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a.	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1 0.08 n.a.	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 4.00E-03 1.50E-02 5.00E-03 4.5.0	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a.	HCO ₃ n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a.	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a.	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 0.03 <0.01 <0.01 <0.01 <0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a.	Br n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.	SiO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a.	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c.
Code PER72 PER73 PER74 PER78 UH5 UH5 UH6 UH6 UH7 UH7* UH8 UH8 UH8 UH9 UH12 UH12 UH14bis UH23 UH24 UH25 UH26 UH27	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a.	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. n.a.	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. n.a.	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a.	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1 0.08 n.a.	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 4.00E-03 1.50E-02 5.00E-03 4.5.0	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. n.a.	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a.	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. n.a.	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.01 0.03 <0.01 0.01 0.03 <0.01 0.01 0.03 <0.01 0.01 0.03 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 <0.01 0.03 <0.01 0.03 0.01 0.03 0.01 0.0	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a.	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.	SiO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a.	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. n.c.
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7 UH7* UH8 UH8bis UH9 UH12 UH14bis UH23 UH24 UH25 UH26 UH27 UH30	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. n.a. 6.5	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. n.a. 4	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. n.a. 9.07	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1 0.08 n.a. n.a. 0.20 0.07 0.21 0.26 0.21 0.20 0.20 0.20 0.21 0.20 0.20 0.21 0.20 0.20 0.20 0.21 0.20 0.20 0.20 0.20 0.08 0.21 0.02 0.03 0.1 0.08 0.1 0.03 0.03 0.03 0.04 0.05	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 4.00E-03 1.50E-02 5.00E-03 4.00E-03 4.00E-03 4.00E-03 4.00E-03 4.00E-03 5.00E-03 5.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. n.a. 1.2	HCO ₃ n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. n.a.	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. n.a. 1.5	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 n.a. <0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.	SiO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a. 48	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. n.c. 1.27
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7 UH7* UH8 UH8bis UH9 UH12 UH14bis UH23 UH24 UH25 UH26 UH27 UH26 UH27 UH30	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. n.a. 6.5 8	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. n.a. 4 4 4 4 4 4	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. n.a. 9.07 9.22	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71 3.94	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1 0.08 n.a. n.a. 0.23 0.08 0.21 0.26 0.21 0.20 0.08 0.21 0.02 0.03 0.11 0.02 0.03 0.11 0.02 0.03 0.11 0.02 0.03 0.11 0.02 0.03 0.03 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.05	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 5.00E-03 4.00E-03 5.00E-03 5.00E-03 5.00E-03 <5.00E-03 c.00E-03 n.a. c.00E-03 7.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. n.a. 1.2 1.9	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. n.a. 43.5 57	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. n.a. 1.5 7.6	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.0	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08 0.11	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.	SiO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a. 48 33.3	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c.
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6bis UH7 UH7* UH8 UH8bis UH9 UH12 UH14bis UH23 UH24 UH25 UH26 UH27 UH26 UH27 UH30 UH32	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. 6.5 8 7.8	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. n.a. 4 4 4 5.044	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. n.a. 9.07 9.22 13.8	Mg n.a. n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71 3.94 4.94	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1 0.02 0.03 0.1 0.08 n.a. 0.2 0.03 0.1 0.20 0.03 0.1 0.02 0.03 0.1 0.03 0.1 0.03 0.1 0.03 0.1 0.03 0.2 0.03 0.1 0.03 0.2 0.03 0.1 0.03 0.2 0.03 0.1 0.03 0.2 0.03 0.2 0.03 0.2 0.03 0.2 0.03 0.2 0.03 0.2 0.03 0.2 0.03 0.2 0.03 0.2 0.03 0.1 0.03 0.04 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 3.00E-03 4.00E-03 4.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 n.a. 5.00E-03 7.00E-03 7.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. n.a. 1.2 1.9 3.7	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. 43.5 57 58.5	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. 1.5 7.6 10.7	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08 0.11 0.08 0.11 0.11 0.08 0.11 0.11 0.03 0.01 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.15 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.02 0.03	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.	SiO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a. 48 33.3 61.7	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. 1.28 -1.69 0.55 -2.68 -1.22 -1.71 -1.68 -1.69 0.55 -2.68 -1.22 -1.71 -1.64 0.07 0.55 -2.68 -1.22 -1.69 0.55 -2.68 -1.22 -1.69 0.55 -2.68 -1.22 -1.69 0.55 -2.68 -1.22 -1.69 0.55 -2.68 -1.22 -1.69 0.55 -2.68 -1.22 -1.69 0.55 -2.68 -1.22 -1.69 0.55 -2.68 -1.22 -1.69 0.55 -2.68 -1.22 -1.69 0.55 -2.68 -1.22 -1.59 0.55 -2.68 -1.22 -1.59 -2.68 -1.22 -1.64 0.07 -2.68 -1.26 -2.68 -1.27 -1.64 -1.26 -2.68 -1.27 -1.64 -1.26 -2.68 -1.26 -2.68 -1.27 -1.64 -1.26 -2.68 -1.26 -2.68 -1.27 -2.68 -1.26 -2.68 -1.27 -2.68 -1.26 -2.68 -1.27 -2.68 -1.26 -2.68 -1.27 -2.68 -1.26 -2.68 -1.26 -2.68 -1.26 -2.68 -1.27 -2.68 -1.26 -2.68 -1.22 -2.68 -1.22 -2.68 -1.22 -1.54 -1.26 -2.68 -1.22 -1.54 -1.26 -2.68 -1.22 -1.54 -1.26 -2.68 -1.22 -1.58 -2.68 -1.22 -1.58 -2.68 -1.22 -1.58 -2.68 -1.22 -1.58 -2.68 -1.22 -1.58 -2.68 -1.22 -1.58 -2.68 -1.22 -1.58 -2.68 -1.22 -1.58 -2.68 -1.22 -1.59 -2.68 -1.22 -1.58 -2.68 -1.22 -1.58 -2.68 -1.22 -1.58 -2.68 -2.68 -1.22 -1.58 -2.68 -1.22 -1.58 -2.68 -2.69 -2.68 -2.69 -2.69 -2.68 -2.69 -2.68 -2.69 -2.68 -2.69 -2.69 -2.68 -2.69 -2.68 -2.69 -2.69 -2.69 -2.68 -2.69 -
Code PER72 PER73 PER74 PER78 UH5 UH5 UH6 UH6 UH7 UH7* UH8 UH8 UH9 UH12 UH14bis UH23 UH24 UH25 UH25 UH26 UH27 UH30 UH32 UH33	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. 6.5 8 7.8 7.8	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. 1.2 1.79 n.a. 1.2 4 4 4 5.044 5	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. n.a. 9.07 9.22 13.8 10	Mg n.a. n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71 3.94 4.94 3	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1 0.02 0.03 0.1 0.08 n.a. 0.2 0.03 0.1 0.20 0.03 0.1 0.02 0.03 0.1 0.03 0.1 0.03 0.1 0.03 0.1 0.03 0.2 0.03 0.1 0.03 0.1 0.03 0.2 0.03 0.1 0.03 0.2 0.03 0.1 0.05 0.03 0.1 0.05 0.03 0.04 0.05 0.04 0.05	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 5.00E-03 4.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 7.00E-03 7.00E-03 5.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. n.a. 1.2 1.9 3.7 1.3	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. 43.5 57 58.5 51	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. 1.5 7.6 10.7 5.3	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08 0.01 0.03 0.07 n.a. 0.08 0.01 0.03 0.07 n.a. 0.08 0.01 0.03 0.07 n.a. 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.05 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.01 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.05	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.	SIO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a. 48 33.3 61.7 77	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. n.c. 1.27 -1.88 -1.22 -1.71 n.c.
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6 UH7 UH7* UH8 UH8 UH8 UH9 UH12 UH14bis UH23 UH24 UH25 UH26 UH27 UH26 UH27 UH30 UH30 LH30 LH32 UH33 UH33bis	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. 6.5 8 7.8 7.8 7.02 72	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. 1.1 1.79 n.a. 4 4 5.044 5 11.22	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. 9.07 9.22 13.8 10 3.7,3	Mg n.a. n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71 3.94 4.94 3 30	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1 0.02 0.03 0.1 0.08 n.a. n.a. 0.23 0.08 0.21 0.25 0.09 0.21 0.26 0.21 0.02 0.03 0.1 0.02 0.03 0.1 0.08 0.21 0.08 0.21 0.02 0.03 0.1 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.25 0.08 0.21 0.08 0.25 0.08 0.25 0.08 0.25 0.08 0.25 0.08 0.25 0.08 0.25 0.08 0.25 0.03 0.04 0.05 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.04 0.05 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 5.00E-03 4.00E-03 1.50E-02 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 7.00E-03 7.00E-03 5.00E-03 1.16E-01	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. 1.2 1.9 3.7 1.3 58	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. 43.5 57 58.5 51 360	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. 1.5 7.6 10.7 5.3 11.2	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.01 <0.02 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08 0.07 n.a. 0.08 0.01 0.01 0.03 0.07 n.a. 0.03 0.07 n.a. 0.03 0.07 n.a. 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.04 0.15 0.02 0.03 0.04 0.02 0.03 0.02 0.03 0.02 0.03 0.01 0.03 0.02 0.03 0.02 0.03 0.01 0.02 0.03 0.02 0.03 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.04	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.	SiO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a. 48 33.3 61.7 77 63.4	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. n.c. 1.23 -1.69 0.69 -1.23 -1.68
Code PER72 PER73 PER74 PER78 UH5 UH5 UH6 UH7 UH7* UH7* UH8 UH8bis UH9 UH12 UH14bis UH23 UH24 UH25 UH26 UH27 UH26 UH27 UH30 UH30 DI32 UH33 UH33bis UH33*	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. 6.5 8 7.8 7.02 72 55	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. n.a. 4 4 5.044 5 11.22 9	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. 9.07 9.22 13.8 10 3.7.3 2.6	Mg n.a. n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71 3.94 4.94 3 30 28	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1 0.02 0.03 0.1 0.08 n.a. n.a. 0.23 0.08 0.21 0.25 0.21 0.26 0.21 0.02 0.03 0.1 0.02 0.03 0.1 0.08 0.21 0.02 0.03 0.1 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.21 0.08 0.22 0.03 0.1 0.02 0.03 0.04 0.05 0.022 0.03 0.02 0.03 0.02 0.03 0.04 0.05 0.222 0.022 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.02 0.03 0.02 0.03	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 3.00E-03 4.00E-03 5.00E-03 4.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 7.00E-03 7.00E-03 5.00E-03 1.16E-01 \$.00E-03 1.16E-01	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. 1.2 1.9 3.7 1.3 58 41	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. 43.5 57 58.5 51 360 279	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. 1.5 7.6 10.7 5.3 11.2 9.5	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.02 <0.01 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.01 <0.02 <0.01 <0.02 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08 0.07 n.a. 0.08 0.01 0.03 0.01 0.03	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.	SiO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a. 48 33.3 61.7 77 63.4 63.9	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. 1.23 -1.68 -1.22 -1.71 n.c. 1.23 -1.68 -1.22 -1.71 -1.64 0.07 0.55 -2.68 -1.22 -1.71 -1.64 0.05 -2.68 -1.22 -1.71 -1.64 0.05 -2.68 -1.22 -1.71 -1.64 0.05 -2.68 -1.22 -1.71 -1.64 0.05 -2.68 -1.22 -1.71 -1.64 0.07 -1.64 0.07 -1.64 0.05 -2.68 -1.22 -1.71 -1.64 0.07 -1.64 0.07 -1.64 0.07 -1.68 -1.22 -1.71 -1.64 0.07 -1.64 0.07 -1.64 0.07 -1.68 -1.22 -1.71 -1.64 -1.22 -1.71 -1.64 -1.22 -1.71 -1.64 -1.22 -1.71 -1.64 -1.22 -1.71 -1.64 -1.22 -1.71 -1.64 -1.22 -1.71 -1.64 -1.22 -1.71 -1.64 -1.22 -1.71 -1.64 -1.22 -1.71 -1.64 -1.22 -1.71 -1.64 -1.22 -1.71 -1.64 -1.22 -1.71 -1.64 -1.22 -1.71 -1.68 -1.22 -1.71 -1.64 -1.22 -1.71 -1.68 -1.22 -1.71 -1.64 -1.22 -1.71 -1.68 -1.22 -1.71 -1.64 -1.22 -1.71 -1.68 -1.22 -1.71 -1.68 -1.22 -1.71 -1.68 -1.22 -1.71 -1.68 -1.22 -1.71 -1.68 -1.23 -1.23 -1.68 -1.22 -1.71 -1.68 -1.23 -1.23 -1.68 -1.23 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68 -1.23 -1.68
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6 UH7 UH7* UH8 UH28 UH9 UH12 UH14bis UH24 UH25 UH24 UH25 UH26 UH27 UH30 UH30_bis UH32 UH33 UH33bis UH33* UH36	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. 6.5 8 7.8 7.02 72 55 n.a.	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. 1.1 1.79 n.a. 4 4 5.044 5 11.22 9 n.a.	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. 9.07 9.22 13.8 10 3.7.3 2.6 n.a.	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71 3.94 4.94 3 30 28 n.a.	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1 0.08 n.a. n.a. 0.04 0.05 0.22 <0.01 n.a.	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 (5.00E-03 4.00E-03 1.50E-02 5.00E-03 (5.00E-03 (5.00E-03 (5.00E-03 n.a. (5.00E-03 n.a. 7.00E-03 7.00E-03 (5.00E-03 1.16E-01 (5.00E-03 1.16E-01 (5.00E-03 n.a.	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. 1.2 1.9 3.7 1.3 58 41 n.a.	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. 43.5 57 58.5 51 360 279 n.a.	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. 1.5 7.6 10.7 5.3 11.2 9.5 n.a.	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.02 0.01 1.32 0.91 n.a.	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08 0.07 n.a. n.a. 0.08 0.1 0.1 0.1 0.06 0.41 0.34 n.a.	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5 <0.05 0.05 <0.05 2.2 0.7 <0.05 <0.05 2.2 0.7 <0.05 <1.3 n.a. 24.4 9.1 17.3 13 8 8 8 8 n.a.	SIO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a. 48 33.3 61.7 77 63.4 63.9 n.a.	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c.
Code PER72 PER73 PER74 PER78 UH5 UH6 UH6 UH7 UH7* UH8 UH28 UH9 UH12 UH14bis UH24 UH25 UH26 UH27 UH26 UH27 UH30 LH30_bis UH32 UH33 UH33bis UH33* UH36 UH38	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. 6.5 8 7.8 7.02 72 55 n.a. 11.6	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. 1.1 1.79 n.a. 4 5 5 11.22 9 n.a. 9.32	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. 9.07 9.22 13.8 10 3.7.3 2.6 n.a. 8.74	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71 3.94 4.94 3 30 28 n.a. 4.16	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1 0.08 n.a. n.a. 0.04 0.04 0.05 0.05 0.22 <0.01 n.a. 0.07 0.22 <0.07 0.21 0.23 0.08 0.21 0.02 0.03 0.1 0.03 0.1 0.08 0.21 0.03 0.03 0.1 0.03 0.04 0.05 0.05 0.22 <0.05 0.22 <0.01 0.05 0.22 0.03 0.05 0.22 0.05 0.22 0.07 0.07 0.05 0.07 0.05 0.07 0.07 0.07 0.05 0.07 0.07 0.05 0.07 0.07 0.05 0.07 0.07 0.05 0.07 0.07 0.05 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.08 0.07 0.08 0.09 0.03 0.04 0.05 0.05 0.02 0.05 0.05 0.07 0.07 0.07 0.05 0.05 0.07 0.07 0.07 0.05 0.07 0.0	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 5.00E-03 4.00E-03 1.50E-02 5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03 7.00E-03 7.00E-03 5.00E-03 1.16E-01 <5.00E-03 n.a. <5.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. 1.2 1.9 3.7 1.3 58 41 n.a. 3.1	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. 43.5 57 58.5 51 360 279 n.a. 64.2	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. 1.5 7.6 10.7 5.3 11.2 9.5 n.a. 5.5	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.01 n.a. <0.01 0.02 0.01 0.02 0.01 1.32 0.91 n.a. 0.01	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08 0.1 0.1 0.1 0.08 0.1 0.1 0.1 0.06 0.41 0.34 n.a. 0.05	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5 <0.05 0.05 <0.05 2.2 0.7 <0.05 <0.05 2.2 0.7 <0.05 <1.3 n.a. 24.4 9.1 17.3 13 8 8 8 n.a. 15.9	SIO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a. 48 33.3 61.7 77 63.4 63.9 n.a. 54.9	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. -1.88 -3.06 -0.69 -1.23 -1.68 0.61 n.c. -0.21
Code PER72 PER73 PER74 PER78 UH5 UH5 UH6 UH7 UH7* UH8 UH8 UH8 UH8 UH9 UH12 UH14bis UH24 UH25 UH26 UH27 UH26 UH27 UH30 UH30 UH32 UH33 UH33bis UH33 UH38 UH38 UH39	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. 6.5 8 7.8 7.8 7.8 7.8 7.8 7.02 72 55 n.a. 11.6 9.02	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. 1.1 1.79 n.a. 4 5.044 5 11.22 9 n.a. 9 n.a. 9.32 6.52	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. 9.07 9.22 13.8 10 37.3 2.6 n.a. 8.74 11.7	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71 3.94 4.94 3 30 28 n.a. 4.16 4.95	Sr n.a. n.a. 0.2 0.07 0.21 0.21 0.26 0.21 n.a. 0.23 0.08 0.21 0.02 0.03 0.1 0.08 n.a. n.a. 0.04 0.04 0.05 0.05 0.22 <0.01 n.a. 0.07 0.09	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 5.00E-03 4.00E-03 1.50E-02 5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03 7.00E-03 7.00E-03 1.16E-01 5.00E-03 1.16E-01 <5.00E-03 3.00E-03 3.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. 1.2 1.9 3.7 1.3 58 41 n.a. 3.1 4.54	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. 43.5 57 58.5 51 360 279 n.a. 64.2 57	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. 1.5 7.6 10.7 5.3 11.2 9.5 n.a. 5.5 7.23	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.01 <0.01 0.02 0.01 1.32 0.91 n.a. 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5 <0.05 0.5 <0.05 2.2 0.7 <0.05 2.2 0.7 <0.05 1.3 n.a. 24.4 9.1 17.3 13 8 8 n.a. 15.9 21.3	SIO2 n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a. 48 33.3 61.7 77 63.4 63.9 n.a. 54.9 65.7	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. -1.88 -3.06 -0.69 -1.23 -1.68 0.61 n.c. -0.21 -0.7
Code PER72 PER73 PER74 PER78 UH5 UH5 UH7 UH7* UH8 UH8bis UH9 UH12 UH14bis UH24 UH25 UH26 UH27 UH26 UH27 UH30 UH30 UH32 UH33 UH33bis UH33* UH38 UH39 UH40	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. 6.5 8 7.8 7.8 7.8 7.02 72 55 n.a. 11.6 9.02 10	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. 1.3 1.1 1.79 n.a. 4 5.044 5 11.22 9 n.a. 9 n.a. 9.32 6.52 1.7	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. 9.07 9.22 13.8 10 37.3 2.6 n.a. 8.74 11.7 6.32	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71 3.94 4.94 3 30 28 n.a. 4.16 4.95 2.47	Sr n.a. n.a. n.a. 0.2 0.07 0.21 0.22 0.21 0.21 0.22 0.23 0.08 0.21 0.08 0.21 0.08 0.21 0.03 0.1 0.08 n.a. 0.04 0.05 0.22 <0.01	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 5.00E-03 4.00E-03 1.50E-02 5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03 7.00E-03 7.00E-03 1.16E-01 5.00E-03 1.16E-01 5.00E-03 1.16E-01 5.00E-03 1.16E-01 5.00E-03 1.90E-02	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. 1.2 1.9 3.7 1.3 58 41 n.a. 3.1 4.54 0.75	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. 43.5 57 58.5 51 360 279 n.a. 64.2 57 51	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. 1.5 7.6 10.7 5.3 11.2 9.5 n.a. 5.5 7.23 3.02	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.01 1.32 0.91 n.a. 0.01 0.02 0.01 1.32 0.91 n.a. 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5 <0.05 0.5 <0.05 2.2 0.7 <0.05 2.2 0.7 <0.05 2.2 0.7 <0.05 3.3 n.a. n.a. 24.4 9.1 17.3 13 8 8 n.a. 15.9 21.3 5.13	SIO2 n.a. n.a. 1.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a. 48 33.3 61.7 77 63.4 63.9 n.a. 54.9 65.7 43.5	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. -1.88 -3.06 -0.69 -1.23 -1.68 0.61 n.c. -0.21 -0.7 -1.59
Code PER72 PER73 PER74 PER78 UH5 UH5 UH5 UH7 UH7* UH8 UH8bis UH9 UH12 UH14bis UH24 UH25 UH26 UH27 UH26 UH27 UH30 UH30 UH30 UH32 UH33 UH33bis UH33bis UH33bis UH38 UH39 UH40 UH42	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. 6.5 8 7.8 7.8 7.02 72 55 n.a. 11.6 9.02 10 11.5	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. 1.1 1.79 n.a. 4 4 5.044 5 11.22 9 n.a. 9 n.a. 9 1.7 8	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. 9.07 9.22 13.8 10 37.3 2.6 n.a. 8.74 11.7 6.32 2.6	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71 3.94 4.94 3 30 28 n.a. 4.16 4.95 2.47 12	Sr n.a. n.a. n.a. 0.2 0.07 0.21 0.21 0.21 0.21 0.22 0.21 0.22 0.03 0.1 0.08 n.a. 0.04 0.05 0.08 0.1 0.08 0.1 0.08 0.01 0.02 0.03 0.04 0.05 0.22 <0.01	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 4.00E-03 4.00E-03 4.00E-03 1.50E-02 5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03 7.00E-03 7.00E-03 7.00E-03 1.16E-01 <5.00E-03 1.16E-01 <5.00E-03 3.00E-03 3.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. 1.2 1.9 3.7 1.3 58 41 n.a. 3.1 4.54 0.75 10.4	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. 43.5 57 58.5 51 360 279 n.a. 64.2 57 51 78	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. 1.5 7.6 10.7 5.3 11.2 9.5 n.a. 5.5 7.23 3.02 21	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.01 <0.01 1.32 0.91 n.a. 0.01 0.02 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 0.01 <0.01 <0.02 0.01 <0.02 0.01 <0.01 <0.01 0.02 0.01 <0.01 0.02 0.01 <0.01 <0.01 0.02 0.01 <0.01 <0.01 0.02 0.01 <0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.06 0.41 0.34 n.a. 0.05 0.04 0.25 0.05	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5 <0.05 0.5 <0.05 2.2 0.7 <0.05 2.2 0.7 <0.05 1.3 n.a. n.a. 24.4 9.1 17.3 13 8 8 n.a. 15.9 21.3 59	SIO2 n.a. n.a. 1.a.	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. -1.88 -3.06 -0.69 -1.23 -1.68 0.61 n.c. -0.21 -0.7 -1.59 0.14
Code PER72 PER73 PER74 PER78 UH5 UH5 UH5 UH7 UH7* UH8 UH8bis UH9 UH12 UH14bis UH23 UH24 UH25 UH26 UH27 UH30 UH32 UH30 UH32 UH33 UH33bis UH33bis UH33bis UH33bis UH38 UH38 UH38 UH38 UH39 UH40 UH42 UH43	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. 6.5 8 7.8 7.02 72 55 n.a. 11.6 9.02 10 11.5 10.4	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. 1.1 1.79 n.a. 4 4 5 5 11.22 9 n.a. 9 n.a. 9 1.22 9 n.a. 9 1.7 8 6.8	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. 9.07 9.22 13.8 10 37.3 26 n.a. 8.74 11.7 6.32 26 18.4	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71 3.94 4.94 3 30 28 n.a. 4.16 4.95 2.47 12 9.72	Sr n.a. n.a. n.a. 0.2 0.07 0.21 0.22 0.21 0.21 0.22 0.21 0.22 0.03 0.1 0.08 n.a. 0.04 0.05 0.08 0.03 0.1 0.08 n.a. 0.04 0.05 0.22 <0.07	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 4.00E-03 5.00E-03 4.00E-03 4.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 7.00E-03 7.00E-03 1.16E-01 5.00E-03 1.16E-01 5.00E-03 1.90E-02 3.00E-03 3.00E-03 3.00E-03 3.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. 1.2 1.9 3.7 1.3 58 41 n.a. 3.1 4.54 0.75 10.4 3.9	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. 43.5 57 58.5 51 360 279 n.a. 64.2 57 51 78 93	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. 1.5 7.6 10.7 5.3 11.2 9.5 n.a. 5.5 7.23 3.02 21 18	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 1.32 0.91 n.a. 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01	F n.a. n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08 0.1 0.1 0.1 0.08 0.1 0.1 0.1 0.06 0.41 0.34 n.a. 0.05 0.04 0.25 0.05 0.05 0.05	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5 <0.05 0.5 <0.05 2.2 0.7 <0.05 <0.05 2.2 0.7 <0.05 <1.3 n.a. 24.4 9.1 17.3 13 8 8 n.a. 15.9 21.3 5.13 59 15.6	SIO2 n.a. n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a. 48 33.3 61.7 77 63.4 63.9 n.a. 54.9 65.7 43.5 62 26.7	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. -1.88 -3.06 -0.69 -1.23 -1.68 0.61 n.c. -0.21 -0.7 -1.59 0.14 1.27
Code PER72 PER73 PER74 PER78 UH5 UH5 UH5 UH7 UH7* UH8 UH8bis UH9 UH12 UH14bis UH23 UH24 UH25 UH26 UH27 UH30 UH32 UH30 UH32 UH33 UH33bis UH33bis UH33bis UH33bis UH33bis UH38 UH38 UH39 UH40 UH42 UH43 UH44bis	Na n.a. n.a. 414 11.6 6.62 6.72 8.36 9.26 n.a. 9.72 8.78 22 5.5 1.6 2.9 3.63 n.a. n.a. 6.5 8 7.8 7.02 72 55 n.a. 11.6 9.02 10 11.5 10.4 4.93	K n.a. n.a. 49.7 4.53 3.8 3.9 4.46 4.1 n.a. 5.93 3.87 4.18 4.3 1 1.1 1.79 n.a. 1.1 1.79 n.a. 4 4 5 5.044 5 11.22 9 n.a. 9 n.a. 9 n.a. 4.5 5.044 5 11.22 9 n.a. 6.52 1.7 8 6.8 2.93	Ca n.a. n.a. 18.6 15.2 131 123 110 98 n.a. 99 13.8 63 2.9 3.5 6.6 12.4 n.a. 9.07 9.22 13.8 10 37.3 26 n.a. 8.74 11.7 6.32 26 18.4 5.73	Mg n.a. n.a. 19 5.2 4.5 4.4 4.69 4.41 n.a. 4.8 6.41 5.18 0.83 1.5 3 7.75 n.a. n.a. 3.71 3.94 4.94 3 30 28 n.a. 4.16 4.95 2.47 12 9.72 2.2	Sr n.a. n.a. n.a. 0.2 0.07 0.21 0.22 0.21 0.21 0.22 0.21 0.22 0.03 0.1 0.08 n.a. 0.04 0.05 0.08 0.01 0.02 0.03 0.1 0.04 0.05 0.22 <0.07	Li n.a. n.a. 4.39E-01 3.00E-03 5.00E-03 4.00E-03 2.00E-03 4.00E-03 4.00E-03 4.00E-03 4.00E-03 1.50E-02 5.00E-03 <5.00E-03 <5.00E-03 <5.00E-03 7.00E-03 7.00E-03 1.16E-01 <5.00E-03 1.16E-01 <5.00E-03 1.90E-02 3.00E-03 3.00E-03 3.00E-03 3.00E-03	Cl n.a. n.a. 235 1.6 1.2 1.3 3.94 2.59 n.a. 4.35 3.39 2.3 0.65 0.42 0.55 1.8 n.a. n.a. 1.2 1.9 3.7 1.3 58 41 n.a. 3.1 4.54 0.75 10.4 3.9 0.9 0.9	HCO3 n.a. n.a. 711 96 390 387 342 303 57.9 312 87 270 30 24 43.8 85.8 n.a. n.a. 43.5 57 58.5 51 360 279 n.a. 64.2 57 51 78 93 42	SO4 n.a. n.a. 110 5.2 30.1 30.7 18.6 16.9 n.a. 21 9.7 n.a. 1.1 0.13 0.15 0.35 n.a. 1.5 7.6 10.7 5.3 11.2 9.5 n.a. 5.5 7.23 3.02 21 18 0.13	B n.a. n.a. 3 0.01 0.02 0.02 0.02 0.01 n.a. 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 1.32 0.91 n.a. 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01	F n.a. n.a. 1.1 0.33 0.41 0.2 0.23 0.16 n.a. 0.16 0.15 0.62 0.08 0.02 0.03 0.07 n.a. n.a. 0.08 0.1 0.1 0.1 0.1 0.08 0.1 0.1 0.1 0.06 0.41 0.34 n.a. 0.05 0.04 0.25 0.05 0.05 0.22	Br n.a.	NO3 n.a. n.a. 51.2 6.2 0.15 <0.05 0.5 <0.05 0.5 <0.05 2.2 0.7 <0.05 2.2 0.7 <0.05 2.2 0.7 <0.05 1.3 n.a. 24.4 9.1 17.3 13 8 8 n.a. 15.9 21.3 5.13 59 15.6 3.1	SIO2 n.a. n.a. n.a. 46.6 54.7 60 36.2 34.2 22.1 n.a. 39.7 60 55 67 18.5 26.2 34.8 n.a. n.a. 48 33.3 61.7 77 63.4 63.4 63.9 n.a. 54.9 65.7 43.5 62 26.7 51.6	Charge balance (%) n.c. n.c. n.c. 0.28 -1.69 0.81 -1.68 1.13 2.53 n.c. 1.27 -1.64 0.07 0.55 -2.68 -1.22 -1.71 n.c. -1.88 -3.06 -0.69 -1.23 -1.68 0.61 n.c. -0.21 -0.7 -1.59 0.14 1.27 -1.59 0.14

	1	1	1	1	1			1	1	1	1	1			
Code	Na	к	Ca	Mg	Sr	Li	Cl	HCO3	SO4	В	F	Br	NO ₃	Si O ₂	Charge balance (%)
PER13	3.6	3.23	2.32	0.78	0.01	2.00E-03	0.24	24	1.1	0.01	0.08	n.a.	0.25	33.7	-2.14
PER14	3	3.4	2.6	0.7	0.02	2.00E-03	0.2	24	0.74	0.01	0.06	n.a.	0.2	36.7	-2.66
PER15	6.7	4.8	7	2.7	0.05	5.00E-03	0.5	57	0.8	0.01	0.11	n.a.	0.3	77.7	-0.23
PER65	6.2	4.01	11.4	3.6	0.06	<5.00E-03	0.8	57	14	0.01	0.06	n.a.	< 0.05	59.3	-1.14
PER66	16.8	5.8	7.99	6.98	0.04	1.05E-02	2.66	105	3.1	0.05	0.3	n.a.	0.64	69.8	-1.65
PER67	1.65	0.9	2.45	0.94	0.02	<5.00E-03	0.46	16.8	0.14	< 0.01	0.04	n.a.	< 0.05	41.9	-0.54
PER68	5.6	2.3	5.1	2.13	0.03	<5.00E-03	0.85	37.8	1.5	< 0.01	0.1	n.a.	4.9	47.7	-2.44
PER69	2.31	1.2	3.1	1.01	0.03	<5.00E-03	0.4	21	0.18	< 0.01	0.17	n.a.	1	24.8	-2.71
PER70	21.1	4.5	9.2	8.5	0.05	1.50E-02	6.4	114	5.02	0.1	0.32	n.a.	4.3	46.8	-1.76
PER83	6.12	3.08	4.4	1.71	0.02	8.00E-03	0.2	36.6	1	0.01	0.18	n.a.	4	51.6	-0.32
PER84	40	12.8	25.2	13.3	0.22	<5.00E-03	15.4	189	24.7	0.02	<0.02	n.a.	33	68.3	-2.29
PER85	12.2	4.34	34	8.3	0.36	<5.00E-03	2.3	54	101	0.03	<0.02	n.a.	< 0.05	66.4	-0.65
PER45	1839	192	4.42	7.7	0.09	2.80E-02	1707	2040	296	< 0.01	<0.02	n.a.	< 0.05	34.5	-1.46
LH47	138	20	1.53	0.1	0.03	3.19E-01	43.3	126	295	468	1.97	n.a.	< 0.05	144	n.c.
LH48	150	23.4	1.5	0.1	0.03	3.22E-01	460	140	295	505	1.94	n.a.	< 0.05	150	n.c.
n.m. = not r	measured														
n.k. = n ot k	nown														
n.a. = not a	nalysed or s	sample coll	ected just fo	r isotopes a	nalysis										
n.s. = not s	a mpled														
n.c. =not ca	lculated														

Table A3 - CO₂ flux measurements performed in selected site of the LHGF study area. Data on soil T and atmospheric pressure are also reported, together with maximum, minimum, average, median and standard deviation values of CO₂ fluxes.

ID #	Date	X(m)	Y(m)	T (°C) soil	P (mbar)	CO ₂ flux (g m ⁻² day ⁻¹)	ID #	Date	X(m)	Y(m)	T (℃) soil	P (mbar)	CO ₂ flux (g m ⁻² day ⁻¹)
1	22/03/2018	663475	2172509	22.6	722	2.5	44	22/03/2018	665407	2172127	34.5	714	2.21
2	22/03/2018	663467	2172512	12.8	722	68.57	45	22/03/2018	665479	2172117	25.7	715	6.16
3	22/03/2018	663472	2172515	21.5	722	47.87	46	22/03/2018	665467	2172080	29.7	714	4.49
4	22/03/2018	663478	2172516	18.4	722	10.62	47	22/03/2018	665465	2172046	23.8	713	5.95
5	22/03/2018	663487	2172533	14.5	722	24.64	48	22/03/2018	665458	2172011	25.9	713	3.64
6	22/03/2018	663480	2172541	17.3	722	59.22	49	22/03/2018	665453	2171975	29.5	712	2.8
7	22/03/2018	663472	2172538	18.1	72.2	89.77	50	22/03/2018	665444	2171939	23.3	712	3.89
8	22/03/2018	663469	2172551	19.7	722	105.72	51	22/03/2018	665424	2171908	24.2	712	3.88
9	22/03/2018	663462	2172544	22.4	722	238.61	52	22/03/2018	665473	2171878	23	712	3.44
10	22/03/2018	663467	2172552	19.9	722	140.86	53	22/03/2018	665499	21/1921	15.6	711	3.52
11	22/03/2018	663458	2172558	26.9	721	121.36	54	22/03/2018	665510	2171959	10.5	712	4.21
12	22/03/2018	663464	2172567	22	721	130.36	56	22/03/2018	665526	2172038	18.1	712	10.34
13	22/03/2018	663452	2172562	21.3	721	84	57	22/03/2018	665536	2172071	20.7	713	8.09
14	22/03/2018	663465	2172572	17.7	721	55.51	58	22/03/2018	665545	2172108	15.3	714	4.36
15	22/03/2018	663465	2172578	19.9	720	35.12	59	23/03/2018	665587	2172093	48.3	713	10.57
16	22/03/2018	663460	2172558	53.5	720	3150	60	23/03/2018	665580	2172058	19.6	713	2.32
17	22/03/2018	663465	2172539	15.4	722	59.61	61	23/03/2018	665570	2172022	24.8	712	10.02
18	22/03/2018	663485	2172524	23.9	722	22	62	23/03/2018	665564	2171984	36.8	711	3.93
19	22/03/2018	663491	2172514	20.1	72.2	1.88	63	23/03/2018	665560	2171946	35.9	711	5.26
20	22/03/2018	663508	2172509	26.5	722	6.89	64	23/03/2018	665563	2171910	35.5	710	3.29
21	22/03/2018	663511	2172523	21.3	722	3.86	65	23/03/2018	665529	2171882	35.6	710	5.04
22	22/03/2018	663467	2172527	22	722	67.6	66	23/03/2018	665509	2171846	38.8	709	1.73
23	22/03/2018	663461	2172535	23.8	722	98.47	67	23/03/2018	665513	2171798	34.7	709	2.19
24	22/03/2018	663474	2172512	26.8	721	17.18	68	23/03/2018	665508	2171751	33.5	709	4.41
25	22/03/2018	663473	2172490	17.8	722	3.78	59	23/03/2018	665584	21/1/13	32.1	709	4.43
26	22/03/2018	663466	2172483	20.5	722	6.79	70	23/03/2018	665610	21/1/52	34.6	709	1.97
27	22/03/2018	663475	2172481	22.6	722	2.68	72	23/03/2018	665684	2171771	28	709	2.32
28	22/03/2018	663462	2172472	18.9	722	7.66	73	23/03/2018	665664	2171739	32	709	2.44
29	22/03/2018	663488	2172495	18.2	722	4.84	74	23/03/2018	665646	2171696	31.6	709	3.33
30	22/03/2018	663495	2172498	31.7	722	2.37	75	23/03/2018	665718	2171668	33.7	709	3.3
31	22/03/2018	665331	2172139	37.7	715	3.29	76	23/03/2018	665734	2171701	34.3	709	3.52
32	22/03/2018	665319	2172102	25.7	715	4.33	77	23/03/2018	665762	2171725	31.5	709	1.89
33	22/03/2018	665318	2172059	20.2	714	2.9	78	23/03/2018	665779	2171645	36.1	709	2.4
34	22/03/2018	665302	2172033	30.2	714	3.93	79	23/03/2018	665758	2171749	28.4	709	3.81
35	22/03/2018	665287	2171993	30.1	714	2.8	80	23/03/2018	665755	2171809	28.7	709	3.92
36	22/03/2018	665280	2171958	28.4	713	3.83	81	23/03/2018	665722	2171854	29.6	710	4.47
37	22/03/2018	665275	2171919	30.7	713	4.81	82	23/03/2018	665681	2171899	28.5	710	4.04
38	22/03/2018	665346	2171903	39.1	713	1.96	83	23/03/2018	665629	2171916	32.2	710	4.43
39	22/03/2018	665355	2171943	27.1	713	3.62	84	23/03/2018	665363	21/1932	24.5	/10	4.21
40	22/03/2018	665366	2171982	29.7	713	3.59	85	23/03/2018	665757	21/18/0	21.0	711	0.13
41	22/03/2018	665374	2172020	30.8	713	6.26	87	23/03/2018	665174	2171917	25.0	711	1 13
42	22/03/2018	665383	2172055	29.3	713	4.83	88	23/03/2018	665175	2171960	25.1	712	3.64
43	22/03/2018	665400	2172093	38.9	714	4.69	89	23/03/2018	665176	2171995	20.4	712	1.62

Table A3 – continue

ID#	Date	X(m)	Y(m)	T (°C) s oil	P (mbar)	CO ₂ flux (g m ⁻² day ⁻¹)
90	23/03/2018	665183	2172006	23.1	712	9.62
91	24/03/2018	663357	2173331	31	721	2.26
92	24/03/2018	663383	2173369	18.6	721	2.71
93	24/03/2018	663388	2173417	20.9	721	1.99
94	24/03/2018	663402	2173457	25.2	721	3.45
95	24/03/2018	663443	2173468	14.8	720	2.5
96	24/03/2018	663464	2173515	15	720	2.62
97	24/03/2018	663420	2173646	23	720	3.13
98	24/03/2018	663440	2173691	30.7	720	1.81
99	24/03/2018	663378	2173632	20.1	719	2.69
100	24/03/2018	663361	2173583	24.5	720	1.5
101	24/03/2018	663348	2173542	26.5	720	2.63
102	24/03/2018	663310	2173473	13.2	720	11.98
103	24/03/2018	663281	2173441	15.3	720	3.33
104	24/03/2018	663258	2173409	18.4	720	3.29
105	24/03/2018	663236	2173370	14.7	720	2.03
106	24/03/2018	663224	2173330	16.4	720	3.55
107	24/03/2018	663219	2173282	22.1	720	5
108	24/03/2018	663210	2173240	24.7	719	5.75
109	24/03/2018	663306	2173227	22.5	719	3.48
110	24/03/2018	663319	2173274	14.4	719	2.14
111	24/03/2018	663335	2173314	24.8	719	8.51
112	24/03/2018	663111	2173327	18.1	719	3.53
113	24/03/2018	663126	2173368	21	719	4.89
114	24/03/2018	663163	2173410	21.5	719	2.33
115	24/03/2018	663193	2173452	23.4	719	1.73
116	24/03/2018	663208	2173495	22.5	719	6.26
117	24/03/2018	663248	2173532	26.8	719	3.65
118	24/03/2018	663298	2173551	24.4	719	10.82
119	24/03/2018	663311	2173624	15.7	719	7.12
120	24/03/2018	663346	2173660	21.3	719	5.24
121	24/03/2018	663375	2173687	19.2	719	10.9
122	24/03/2018	663406	2173721	25.1	718	1.84
123	24/03/2018	663340	2173814	17.1	718	2.24
124	24/03/2018	663313	2173788	21.3	718	6.97
125	24/03/2018	663284	2173757	24.6	718	5.17
126	24/03/2018	663253	2173722	22.5	719	8.11
127	24/03/2018	663225	2173690	22.3	719	3.83
128	24/03/2018	663187	2173663	22.2	719	4.18
129	24/03/2018	663156	2173637	22.5	718	1.62
130	24/03/2018	663127	2173604	22.9	718	4.97
131	24/03/2018	663104	2173572	20	718	3.97
132	24/03/2018	663087	2173527	23.1	718	3.23
133	24/03/2018	663063	2173483	20.3	718	1.4
134	24/03/2018	663046	2173448	20.5	718	3.15
135	24/03/2018	663064	2173407	23	718	9.36

ID#	Date	X(m)	Y(m)	T (*C) soil	P (mbar)	CO ₂ flux (g m ⁻² day ⁻¹)
136	24/03/2018	663056	2173371	21	718	5.81
137	24/03/2018	663044	2173327	22.6	717	10.4
138	28/03/2018	675598	2165426	20	763	0
139	28/03/2018	675576	2165427	20	763	0
140	28/03/2018	675571	2165419	20	763	10.29
141	28/03/2018	675566	2165421	20	763	1.49
142	28/03/2018	675573	2165411	20	763	5.9
143	28/03/2018	675576	2165404	20	763	5.58
144	28/03/2018	675581	2165418	20	763	5.83
145	28/03/2018	675603	2165398	20	763	4.19
146	28/03/2018	675613	2165359	20	763	2.38
147	28/03/2018	675628	2165312	20	763	1.87
148	28/03/2018	675645	2165253	20	763	2.26
149	28/03/2018	675652	2165202	20	763	4.1
150	28/03/2018	675665	2165138	20	763	1.49
151	28/03/2018	675568	2165454	20	763	6.7
152	28/03/2018	675557	2165503	20	763	2.98
153	28/03/2018	675540	2165553	20	763	6.08
154	28/03/2018	675512	2165618	20	763	1.86
155	28/03/2018	675507	2165663	20	763	4.55
156	28/03/2018	675565	2165625	20	763	3.1
157	28/03/2018	675576	2165571	20	763	0.91
158	28/03/2018	675595	2165507	20	763	1.61
159	28/03/2018	675610	2165450	20	763	4.22
160	28/03/2018	675596	2165428	20	763	3.6

	XALAPAS	CO		MASTALO	YA
	N = 30			N = 60	
	$\phi CO_2 \ g \ m^{-2} \ day^{-1}$	Soil temperature °C		$\phi CO_2 g m^{2} day^{1}$	Soil temperature °C
max	3151	54	max	11	48
min	1.9	13	min	1.1	15
average	156	22	average	4.3	29
median	41	21	median	3.9	29
st. dev.	568	7.1	st. dev.	2.2	6.6
	CFE PLAI	NT		PEROTE PL	AIN
	N = 47			N = 23	
	$\phi CO_2 \ g \ m^{-2} \ day^{-1}$	Soil temperature °C		$\phi CO_2 gm^{2}day^{1}$	Soil temperature °C
max	12	31	max	10	20
min	1.4	13	min	0	20
average	4.4	21	average	3.5	20
median	3 5	22	median	3.1	20
mearan	5.5	22			

Table A4 – Isotopic composition determined in collected water samples (Los Humeros). $\delta D\%$ and $\delta^{18}O\%$ are referred to V-SMOW, whereas certified standard NIST SRM 987 was used for ⁸⁷Sr/⁸⁶Sr analyses. Data for dissolved CO₂ are also inserted.

Code	δ ¹⁸ 0‰	δD‰	⁸⁷ Sr/ ⁸⁶ Sr	U.T.	Pco2(bars)	CO _{2(aq)} (mmol/L)	logFco2
			Samplin	g 2017	-	(1111101/12)	
1.1.1	10.59	75.7	0 705 4 7 7	52017	0.007706	0 2 2 2	7.1.1
187	-10.00	-73.2	0.703422		0.007750	0.322	-1.773
183	-11.77	-74.0	0 705016		0.01057	0./445	-1.075
	10.4	-01.0	0.700010		0.01004	0.4477	1.057
LI14	10.58	-70.5			0.01099	0.3437	-1.902
	-10.56	-/4.5	0 707171		0.000395	0.2821	-2.197
LH17	-12.34	-88.9	0.707121		0.08346	3.00	-1.081
LHZO	-8.66	-67.8	0.706978		0.0369	1.535	-1.435
LH21	-11.03	-82.7			0.004923	0.2219	-2.31
LH46	-11.88	-87.6	0.705531		0.01519	0.5868	-1.821
LH50	-11.56	-80.1	0.705383		0.01417	0.5945	-1.851
LH54	-10.91	-77.3	0.706132		0.02324	0.8927	-1.636
LH55	-11.14	-79.6	0.70599	0.3±0.5	0.03711	1.369	-1.433
LH5	-10.92	-76.3			8.38E-05	0.004123	-4.079
LH6	-11.15	-77.3	0.706397		0.000409	0.01873	-3.391
LH7					0.000369	0.01794	-3.436
LH7 bis	-11.11	-78.8					
LH8	-11.25	-79.7	0.706251		0.000512	0.02442	-3.294
LH9	-10.64	-74.9			0.000373	0.01659	-3.431
LH12	-11.51	-83.3	0.706369		0.000271	0.01141	-3.569
LH13	-11.63	-83.7			0.00012	0.005033	-3.925
LH14	-10.66	-77.6			0.000199	0.009141	-3.704
LH19	-9.73	-69.9					
LH23	-10.87	-74.2					
LH24	-10.74	-74.1					
LH25	-11 57	-87 7					
1H25	-11.17	-79.1					
1H27	-10.97	-77.7					
1H30	-8.83	-59.7					
1421	-0.05	-57.5					
1422	-9.30	-04.J	0.70550.0				
1422	-5.45	-03.0	0.703308				
	-0.72	-0.0 C					
LH34	-15.24	-95.0					
LH35	-13.5	-98.8					
LH36	-13.15	-94.6	0.705282				
LH37	-13.46	-98.1					
LH38	-7.66	-49.6					
LH39	-7.84	-50.4	0.704532				
LH40	-10.12	-70.3					
LH41	-10.22	-70.4					
LH42	-8.55	-57.9					
LH43	-9.33	-56.2	0.704573				
LH44	-10.22	-69.5					
Code	\$ ¹⁸ 0%-	8D%-	87 cr/86 cr	ШΤ	Reco(bars)	CO _{2(aq)}	LO FCOD
	0 0,00		51/ 51		. coz(ser.e)	(mmol/L)	
LH44bis	-9.75	-66.1					
LH45	-10.77	-69.4			0.000145	0.00664	-3.841
LH49	-11.27	-73.1			4.03E-05	0.001996	-4.397
LH53	-10.4	-72.7	0.704216		8.34E-05	0.003556	-4.081
LH10	-10.3	-72.5	0.706982				
LH11	-10.72	-79.2					
LH16	-10.62	-74.4					
LH29	-6.7	-42.5					
LH52	-8.33	-57			-		
LH18	0.87	-12.3					
LH22	-1.28	-29.6			_		
LH28	-7.09	-45.2	0.707384		0.000556	0.01484	-3.257
LH51	-10.35	-71	0.706381	0.5±0.4	0.004878	0.1037	-2.313
LH47	2.46	-30.5					
LH48	2.5	-30.7					
			Sam plin	ig 2018			
LH2	-10.14	-74			0.002414	0.1057	-2.62
LH3	-11	-81.3			0.001892	0.07915	-2.725
LH17	-11.51	-86.8			0.06135	2.704	-1.215
LH17bis	-11.89	-87.4			0.04383	1.887	-1.361
LH46	-11.97	-86.7		0.2±0.7	0.009906	0.3856	-2.006
LH46_bis	-11.8	-85.8			0.04617	1.572	-1.338
LH50	-11.05	-80.5			0.009088	0.3823	-2.044
LH50_bis	-11.73	-84.4			0.006004	0.2435	-2.224
LH54	-10.51	-77.9			0.03538	1.387	-1.454
LH55	-10.97	-81.5			0.03719	1.393	-1.432
LH61	-10.6	-76.3			0.01201	0.419	-1.923
PER27	-10.97	-79.2			0.0176	0.7249	-1.757
PER30	n.a.	n.a.					

Code	δ ¹⁸ 0‰	۵D%	⁸⁷ Sr/ ⁸⁶ Sr	U.T.	P _{CO2} (bars)	CO _{2(aq)}	logFco2
PER36	-12.85	-92.7			0.01007	0.4314	-1.999
PER37	-12.76	-94.4			0.004331	0.1885	-2.366
PER38	-12.73	-94			0.003909	0 1697	-7.41
PER39	-13.05	-96.5			0.003303	0.1057	2.72
PER40	-17.6	-97.3			0.005687	0.2606	-7.748
PEN40	-12.0	-52.5			0.005087	0.2000	-2.240
PER42	-9.69	-/0.6			0.005102	0.2205	-2.295
PER43	-12.01	-88.9			0.07324	3.055	-1.138
PER44	-9.24	-68.1			0.005635	0.2547	-2.252
PER47	-12.77	-93.8			0.004342	0.191	-2.365
PER48	-12.99	-94.3			0.03174	1.404	-1.501
PER49	-13.1	-93.5			0.004875	0.2264	-2.314
PER51	-11.29	-85.5			0.01326	0.3884	-1.879
PER52	-10.1	-76.1			0.004041	0.1664	-2.396
PER53	-12.67	-93.2			0.004898	0.1971	-2.312
PER54	-11.47	-81.8			0.01704	0.6517	-1.771
PER55	-9.79	-74.1			0.07628	2.89	-1.12
	10		07 0E			CO _{2(an)}	
Code	δ ¹⁸ 0‰	δD‰	^{8/} Sr/ ⁸⁰ Sr	U.T.	P _{CO2} (bars)	(mmol/L)	logFco2
PER56	-10.64	-79.6			0.02893	0.882	-1.541
PER57	-10.56	-77.4			0.03456	1.127	-1.463
PER58	-12.45	-91.9			0.00299	0.133	-2.527
PER59	-11.5	-83.6			0.008072	0.3102	-2.095
PER60	-11.8	-86.6			0.004584	0 2039	-7 341
DEP 71	-10.49	-75 3			5.007507	0.2000	2.341
PER/1	10.84	-73.3					
PER/Z	-10.84	-/8.5					
PER73	-10.73	-/8.4					
PER74	-10.53	-76.7					_
PER78	-5.15	-39.5			0.000828	0.03875	-3.084
LH5	-10.67	-74.8			0.00242	0.1188	-2.619
LH6	-10.77	-76.5			0.0216	1.036	-1.668
LH6bis	-10.79	-75.5					
LH7	-11.14	-78.9			0.003351	0.1691	-2.477
LH7*	-11.26	-79.6			0.00826	0.3998	-2.085
LH8	-11.26	-78.8					
IH8his	-1117	-79.7			0.004688	0.232	-7337
10013	-10.71	-75.1			0.00077	0.4047	-2.015
1417	11.47	02.2			0.00372	0.4547	-2.015
	-11.42	-05.5			0.004.353	0.05045	2.074
LH14bis	-10.21	-67.2			0.001353	0.06945	-2.8/1
LH23	-10.72	-73.4					
LH24	-10.98	-74.9					
LH25	-11.92	-83					
LH26	-11.95	-80.5					
LH27	-11.78	-78.7					
LH30	-9.04	-59.3			0.002197	0.1109	-2.661
LH30 bis	-9.79	-65.1			0.002101	0.1006	-2.68
LH32	-9.59	-66			0.004996	0.2385	-2.304
1833	-8.96	-57.1			0.005514	0 2647	-7 761
IH33bic	-11.07	-70 0			0.01035	0.4081	-1987
1152*	-10.70	-76			0.01000	0.4001	1.307
1035	1355	-70					
LH36	-13.56	-97.8			0.000	0.4.47-	
LH38	-7.99	-50.6			0.002965	0.1408	-2.53
LH39	-8.07	-52.2			0.000578	0.0267	-3.24
LH40	-10.34	-71.1			0.00098	0.04677	-3.011
LH42	-8.72	-57.8			0.000838	0.03926	-3.079
LH43	-8.7	-58.4			0.004975	0.2349	-2.306
LH44bis	-9.91	-67.1			0.001438	0.07466	-2.845
PER13	-13.8	-97.7			0.001373	0.08052	-2.865
PER14	-14.01	-99.6		1.5±0.6	0.000831	0.05063	-3.083
PER15	-13.67	-98.9			0.006298	0.3393	-2.203
PER65	-9.85	-66.7			_		
PER66	-11.46	-81			0.000788	0.03369	-3106
PERET	-2 07	.55 5			0.001700	0.06757	-7 804
DEDER	0.72	55.5			0.001205	0.00252	2.004
PERCO	-3.2	-54.4		14:07	0.00038/	0.04/14	-3.008
PERDY	-0./	-22		1.4±0.4	0.000379	0.01322	-5.424
Code	δ ¹⁸ 0‰	δD‰	⁸⁷ Sr/ ⁸⁶ Sr	U.T.	Pco2(bars)	(mmol/L)	logFco2
PER70	-9.21	-60.3			0.001327	0.06267	-2.879
PER83	-9.64	-63.9			0.001974	0.09664	-2.707
PER84	-10.3	-75.7					
PER85	-10.67	-76.9			0,00064	0.0335	-3.197
PFR45	na	n a					
1847	7 0/	.21					
11147	2.54						
LH48	2.98	-29.6					

	Date	Reference	Na	K	Ca	Mg	Li	Cl	HCO ₂	SO₄	В	As	SiOn
H1	21/10/1987	1	269	43.8	1.2	0.012	0.9	120	361	114	214	3.9	800
H6	22/10/1987	1	196	40.2	0.4	0.02	0.9	180	203	6.5	288	12.1	1000
H7	21/10/1987	1	168	27.9	0.9	0.02	-	95	241	90.5	2665	26	900
H8	22/10/1987	1	239	45.7	0.6	0.03	0.6	120	294	94.8	452	5.1	967
H12	22/10/1987	1	108	20	0.3	0.05	0.3	74	196	17.2	942	162	600
H-1	04/01/1996	2	267	45	2.04	0.12	0.47	90.2	162	233	218	2.79	1005
H-3	05/10/1994	2	420	49	1.6	0.02	1.6	175	334	71	477	4	556
H-6	04/01/1996	2	142	31	1.6	0.18	0.42	104	48	23	345	27.41	946
H-7	04/01/1996	2	177	36	2.24	0.18	0.41	83.3	34	239	946	8.5	915
H-8	04/01/1996	2	243	48	2.04	0.22	0.3	76.3	139	213	453	3.1	1120
H-9	10/07/1090	2	250	52	2.08	0.08	0.49	50.3	122	22	1823	/3.62	838
H-10	19/07/1989	2	207	19	1.8	0.4	0.83	983	28	112	1/10	n.a.	909
H-12	04/01/1996	2	87	19	0.22	0.10	0.45	41.6	130	113	695	16.35	688
H-13	05/10/1995	2	341	54	3.61	0.07	1 37	140	117	409	219	na	1006
H-15	03/01/1996	2	113	21	1.2	0.22	0.39	6.9	61	30	200	0.5	797
H-16	06/01/1996	2	549	24	1.2	0.08	0.45	4.1	216	408	402	7.9	580
H-17	03/01/1996	2	91	19	1.4	0.16	0.37	24.3	55	91	333	24.41	893
H-18	13/10/1989	2	123	23	0.92	0.04	0.37	112	397	43	118	n.a.	229
H-19	05/01/1996	2	140	21	2.18	0.14	0.41	23.8	57	112	1873	21.71	486
H-20	09/01/1996	2	160	20	1.8	0.18	0.4	115	20	35	447	5.53	838
H-23	13/11/1987	2	290	22	37	0.4	0.4	622	21	57	194	n.a.	114
H-24	18/05/1989	2	285	46	1.5	0.11	0.9	325	58	27	423	n.a.	406
H-27	14/02/1989	2	68	3	1.8	0.4	0.17	233	14	26	136	n.a.	100
H-28	05/01/1996	2	228	19	0.6	0.3	0.46	7.6	267	56	67	1.9	424
H-29	10/01/1992	2	220	6	0.2	0.001	0.03	36	17	21	513	n.a.	80
H-30	03/01/1996	2	205	29	1.74	0.16	0.44	9.7	55	39	1203	37.3	747
H-31	08/01/1996	2	115	21	2	0.12	0.38	8.3	16	16	421	7.6	869
H-32	05/01/1996	2	64	12	0.22	0.24	0.24	26.8	38	23	592	18.71	710
H-33	03/01/1996	2	363	33	2.24	0.14	0.47	400	13	49	978	29.51	458
H-34	05/01/1996	Z	1//	24	1	0.08	0.3	9	67	91	202	0.5	1130
	Date	Reference	20	K E	La 1.C	1VIg	0.10	1.4	HCU ₃	42	B 2020	AS	3102
H-36	09/01/1996	2	1201	52	3.16	0.1	0.19	1.4 60.4	3/08	1133	2950	10.0	16
H-36	08/03/1996	2	266	17	2.4	0.32	0.5	10.4	347	300	1864	6 44	304
H-37	11/03/1996	2	466	56	4.6	0.01	0.47	4 3	102	407	1660	0.96	594
H-22	04/02/1988	5	310	33	2.6	0.2	0.9	34.5	443	22.2	77.9	n.a.	879
H-28	14/08/2002	5	180	17.4	0.38	0.09	0.71	5.4	209	52.9	78.7	n.a.	591
H-28	03/09/2002	5	206	17	0.26	0.12	1.08	3.6	160	81.8	78.7	n.a.	520
H-29	10/01/1992	5	6	1	0.1	0	0.03	36	17	10.5	513	n.a.	80
H-43	12/01/2016	5	4	42.4	4.12	0.53	<0.1	26	8.66	40.7	217	n.a.	34.9
H-43	12/01/2016	5	4.5	31.6	4.52	0.56	<0.1	23.7	11.8	26.8	186	n.a.	34.9
H-43	12/01/2016	5	88	10.6	11.4	1.41	0.15	34.3	16.5	86.7	356	n.a.	88.4
H-58	03/02/2017	5	11.3	3.3	4.89	0.88	<0.1	5.2	31.9	4.6	2638	n.a.	57.8
H-58	07/02/2017	5	34.7	1.69	20.4	1.14	0.1	22.7	67.2	29	3635	n.a.	51.4
H-58	15/02/2017	5	54.5	0.7	8.66	0.53	<0.1	-	6.93	27.9	3349	n.a.	18
H-59	17/02/2017	5	172	1.88	<0.1	<0.1	0.16	98.9	109	29.5	26.9	n.a.	46.1
H-59	24/02/2017	5	22	1.93	0.44	<0.1	<0.1	10	1.77	11.6	86.3	n.a.	5.6
H-59	24/02/2017	5	103	1.4	0.53	<0.1	0.05	37.5	85	12.2	52	n.a.	58.8
H-23	U2/11/1987	5	464	28.4	15.15	0.15	0.9	/46	1	117	130	n.a.	155
n-23	15/11/198/	5	290	10	2.61	0.02	0.4	104	20.7	28.5	194	n.a.	114
ц 			140	10	3	0.03	0.2	194	2.4	53.9 10 E	13.2	n.a.	10 5
H-23 н-27	13/04/1000	5	75	6	11.0-	1		200	TO'2	10.5	191	n.a.	51 8
H-23 H-27 H-27	13/04/1989 19/05/1989	5	75 88	6 27	0.85	0.04	0.1	13.1	130	13.8	88.4		51.0
H-23 H-27 H-27 H-27	13/04/1989 19/05/1989 08/06/1989	5 5 5 5	75 88 74	6 27 8	0.85	0.04	0.1	13.1 13.1	130 133	13.8 12	88.4	n.a.	777
H-23 H-27 H-27 H-27 H-49	13/04/1989 19/05/1989 08/06/1989 07/04/2016	5 5 5 5 5	75 88 74 266	6 27 8 42.5	0.85 0.9 1.9 1.94	0.04 0.17 0.2 <0.1	0.1 0.1 1	13.1 13.1 1570	130 133 195	13.8 12 123	88.4 187 434	n.a. n.a.	777 334
H-23 H-27 H-27 H-27 H-49 H-49	21/01/1988 13/04/1989 19/05/1989 08/06/1989 07/04/2016 21/09/2016	5 5 5 5 5 5 5	75 88 74 266 245	6 27 8 42.5 39.9	0.85 0.9 1.9 1.94 1.95	0.04 0.17 0.2 <0.1 <0.1	0.1 0.1 1 0.85	13.1 13.1 1570 1190	130 133 195 118	13.8 12 123 86.4	88.4 187 434 227	n.a. n.a. n.a.	777 334 809
H-23 H-27 H-27 H-27 H-49 H-49 H-49	21/01/1988 13/04/1989 19/05/1989 08/06/1989 07/04/2016 21/09/2016 06/10/2016	5 5 5 5 5 5 5 5 5	75 88 74 266 245 249	6 27 8 42.5 39.9 40.8	0.83 0.9 1.9 1.94 1.95 2.63	0.04 0.17 0.2 <0.1 <0.1 <0.1	0.1 0.1 1 0.85 0.84	13.1 13.1 1570 1190 1200	130 133 195 118 48.5	13.8 12 123 86.4 95.3	88.4 187 434 227 227	n.a. n.a. n.a. n.a.	777 334 809 919
H-23 H-27 H-27 H-27 H-49 H-49 H-49 H-56	21/01/1988 13/04/1989 19/05/1989 08/06/1989 07/04/2016 21/09/2016 06/10/2016 25/01/2017	5 5 5 5 5 5 5 5 5 5 5	75 88 74 266 245 249 237	6 27 8 42.5 39.9 40.8 37.6	0.83 0.9 1.9 1.94 1.95 2.63 2.5	0.04 0.17 0.2 <0.1 <0.1 <0.1 <0.1	0.1 0.1 1 0.85 0.84 0.8	13.1 13.1 1570 1190 1200 114	130 133 195 118 48.5 235	13.8 12 123 86.4 95.3 64.6	88.4 187 434 227 227 212	n.a. n.a. n.a. n.a. n.a.	777 334 809 919 642
H-23 H-27 H-27 H-49 H-49 H-49 H-56 H-56	13/04/1989 19/05/1989 08/06/1989 07/04/2016 21/09/2016 06/10/2016 25/01/2017 10/02/2017	5 5 5 5 5 5 5 5 5 5 5 5 5 5	75 88 74 266 245 249 237 233	6 27 8 42.5 39.9 40.8 37.6 37.9	0.9 0.9 1.9 1.94 1.95 2.63 2.5 1.9	0.04 0.17 0.2 <0.1	0.1 0.1 1 0.85 0.84 0.8 0.8	13.1 13.1 1570 1190 1200 114 170	130 133 195 118 48.5 235 236	13.8 12 123 86.4 95.3 64.6 21.2	88.4 187 434 227 227 212 207	n.a. n.a. n.a. n.a. n.a. n.a.	777 334 809 919 642 627
H-23 H-27 H-27 H-27 H-49 H-49 H-49 H-56 H-56 H-56	13/04/1989 19/05/1989 08/06/1989 07/04/2016 21/09/2016 06/10/2016 25/01/2017 10/02/2017	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	75 88 74 266 245 249 237 233 251	6 27 8 42.5 39.9 40.8 37.6 37.9 31.2	0.9 0.9 1.9 1.94 1.95 2.63 2.5 1.9 1.6	0.04 0.17 0.2 <0.1	0.1 0.1 1 0.85 0.84 0.8 0.8 0.8 0.8 0.7	13.1 13.1 1570 1190 1200 114 170 163	130 133 195 118 48.5 235 236 277	13.8 12 123 86.4 95.3 64.6 21.2 49.8	88.4 187 434 227 227 212 207 264	n.a. n.a. n.a. n.a. n.a. n.a. n.a.	777 334 809 919 642 627 467
H-23 H-27 H-27 H-27 H-49 H-49 H-49 H-56 H-56 H-56 H-12	13/04/1989 19/05/1989 08/06/1989 07/04/2016 21/09/2016 06/10/2016 25/01/2017 10/02/2017 17/02/2017 01/08/2014	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	75 88 74 266 245 249 237 233 251 2.51	6 27 8 42.5 39.9 40.8 37.6 37.9 31.2 0.63	0.83 0.9 1.9 1.94 1.95 2.63 2.5 1.9 1.6 1.46	0.04 0.17 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 n.a.	0.1 0.1 1 0.85 0.84 0.8 0.8 0.8 0.7 n.a.	13.1 13.1 1570 1190 1200 114 170 163 11.8	130 133 195 118 48.5 235 236 277 3.68	13.8 12 123 86.4 95.3 64.6 21.2 49.8 8.6	88.4 187 434 227 227 212 207 264 350	n.a. n.a. n.a. n.a. n.a. n.a. 91.9	777 334 809 919 642 627 467 84.5
H-23 H-27 H-27 H-27 H-49 H-49 H-49 H-56 H-56 H-56 H-12 H-12	13/04/1989 13/04/1989 19/05/1989 08/06/1989 07/04/2016 21/09/2016 06/10/2016 25/01/2017 10/02/2017 17/02/2017 01/08/2014 25/03/2015	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	75 88 74 266 245 249 237 233 251 2.51 2.51 21.9	6 27 8 42.5 39.9 40.8 37.6 37.9 31.2 0.63 3	0.9 0.9 1.9 1.94 1.95 2.63 2.5 1.9 1.6 1.46 1.88	0.04 0.17 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1 0.1 1 0.85 0.84 0.8 0.8 0.8 0.8 0.7 n.a. n.a.	13.1 13.1 1570 1190 1200 114 170 163 11.8 14.2	130 133 195 118 48.5 235 236 277 3.68 25.5	13.8 12 123 86.4 95.3 64.6 21.2 49.8 8.6 8.5	88.4 187 434 227 227 212 207 264 350 258	n.a. n.a. n.a. n.a. n.a. n.a. 91.9 46.5	777 334 809 919 642 627 467 84.5 3
H-23 H-27 H-27 H-49 H-49 H-49 H-56 H-56 H-56 H-12 H-12 H-12	13/04/1989 13/04/1989 19/05/1989 08/06/1989 07/04/2016 21/09/2016 06/10/2016 25/01/2017 10/02/2017 17/02/2017 01/08/2014 25/03/2015 11/01/2017	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	75 88 74 266 245 249 237 233 251 2.51 2.51 21.9 5.49	6 27 8 42.5 39.9 40.8 37.6 37.9 31.2 0.63 3 3.71	0.9 0.9 1.9 1.94 1.95 2.63 2.5 1.9 1.6 1.46 1.88 n.a.	0.04 0.17 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1 0.1 1 0.85 0.84 0.8 0.8 0.7 n.a. n.a. n.a.	13.1 13.1 1570 1190 1200 114 170 163 11.8 14.2 5.11	130 133 195 118 48.5 235 236 277 3.68 25.5 6.99	13.8 12 123 86.4 95.3 64.6 21.2 49.8 8.6 8.5 8.5 10.7	88.4 187 434 227 212 207 264 350 258 614	n.a. n.a. n.a. n.a. n.a. n.a. 91.9 46.5 n.a.	777 334 809 919 642 627 467 84.5 3 72.76
H-23 H-27 H-27 H-49 H-49 H-49 H-56 H-56 H-56 H-12 H-12 H-12 Code	13/04/1989 13/04/1989 19/05/1989 08/06/1989 07/04/2016 21/09/2016 06/10/2016 25/01/2017 10/02/2017 17/02/2017 01/08/2014 25/03/2015 11/01/2017 Date	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 * Reference	75 88 74 266 245 249 237 233 251 2.51 2.51 21.9 5.49 Na	6 27 8 42.5 39.9 40.8 37.6 37.9 31.2 0.63 3 .71 К	0.9 0.9 1.94 1.95 2.63 2.5 1.9 1.6 1.46 1.46 1.88 n.a. Ca	0.04 0.17 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1 0.1 1 0.85 0.84 0.8 0.8 0.8 0.8 0.7 n.a. n.a. n.a. Li	13.1 13.1 1570 1190 1200 114 170 163 11.8 14.2 5.11 Cl	130 133 195 118 48.5 235 236 277 3.68 25.5 6.99 HCO3	13.8 12 123 86.4 95.3 64.6 21.2 49.8 8.6 8.5 10.7 SO4	88.4 187 434 227 227 212 207 264 350 258 614 B	n.a. n.a. n.a. n.a. n.a. n.a. 91.9 46.5 n.a. As	777 334 809 919 642 627 467 84.5 3 72.76 SiO2
H-23 H-27 H-27 H-49 H-49 H-49 H-56 H-56 H-56 H-12 H-12 H-12 Code H-24	13/04/1989 13/04/1989 19/05/1989 08/06/1989 07/04/2016 21/09/2016 06/10/2016 25/01/2017 10/02/2017 17/02/2017 01/08/2014 25/03/2015 11/01/2017 Date 18/05/1989	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	75 88 74 266 245 249 237 233 251 2.51 2.51 21.9 5.49 Na 285	6 27 8 42.5 39.9 40.8 37.6 37.9 31.2 0.63 3 3.71 K 46	0.33 0.9 1.94 1.95 2.63 2.5 1.9 1.6 1.46 1.88 n.a. Ca 0.75	0.04 0.17 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1 0.1 1 0.85 0.84 0.8 0.8 0.8 0.7 n.a. n.a. n.a. iu 0.9	13.1 13.1 1570 1190 1200 114 170 163 11.8 14.2 5.11 Cl 325	130 133 195 118 48.5 235 236 277 3.68 25.5 6.99 HCO3 58.2	13.8 12 123 86.4 95.3 64.6 21.2 49.8 8.6 8.5 10.7 SO4 13.6	88.4 187 434 227 227 212 207 264 350 258 614 B 4230	n.a. n.a. n.a. n.a. n.a. n.a. 91.9 46.5 n.a. As n.a.	777 334 809 919 642 627 467 84.5 3 72.76 SiO2 406
H-23 H-27 H-27 H-27 H-49 H-49 H-49 H-56 H-56 H-56 H-12 H-12 H-12 Code H-24 H-24 H-41	13/04/1989 13/04/1989 19/05/1989 08/06/1989 07/04/2016 21/09/2016 06/10/2016 25/01/2017 10/02/2017 17/02/2017 01/08/2014 25/03/2015 11/01/2017 Date 18/05/1989 21/01/2013	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 * Reference 5 5 5	75 88 74 266 245 249 237 233 251 2.51 2.51 21.9 5.49 Na 285 351	6 27 8 42.5 39.9 40.8 37.6 37.9 31.2 0.63 3 .71 K 46 59.05	0.33 0.9 1.94 1.95 2.63 2.5 1.9 1.6 1.46 1.88 n.a. Ca 0.75 5.65	0.04 0.17 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1 0.1 1 0.85 0.84 0.8 0.8 0.8 0.7 n.a. n.a. n.a. Li 0.9 1.01	13.1 13.1 1570 1190 1200 114 170 163 11.8 14.2 5.11 Cl 325 78.5	130 133 195 118 48.5 235 236 277 3.68 25.5 6.99 HCO3 58.2 530.37	13.8 12 123 86.4 95.3 64.6 21.2 49.8 8.6 8.5 10.7 SO4 13.6 62.6	88.4 187 434 227 227 212 207 264 350 258 614 B 4230 1176	n.a. n.a. n.a. n.a. n.a. 91.9 46.5 n.a. As n.a. n.a.	777 334 809 919 642 627 467 84.5 3 72.76 SiO2 406 1284
H-23 H-27 H-27 H-27 H-49 H-49 H-49 H-56 H-56 H-56 H-12 H-12 H-12 Code H-24 H-24 H-41 H-41	13/04/1989 13/04/1989 19/05/1989 08/06/1989 07/04/2016 21/09/2016 06/10/2016 25/01/2017 10/02/2017 17/02/2017 01/08/2014 25/03/2015 11/01/2017 Date 18/05/1989 21/01/2013 22/01/2015	5 5 5 5 5 5 5 5 5 5 5 5 5 8 8 8 8 8 8 8	75 88 74 266 245 249 237 233 251 2.51 2.51 21.9 5.49 Na 285 351 87.4	6 27 8 42.5 39.9 40.8 37.6 37.9 31.2 0.63 3 .71 K 46 59.05 25.5	0.33 0.9 1.94 1.95 2.63 2.5 1.9 1.6 1.46 1.46 1.88 n.a. Ca 0.75 5.65 0.08	0.04 0.17 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1 0.1 1 0.85 0.84 0.8 0.8 0.7 n.a. n.a. n.a. Li 0.9 1.01 0.31	13.1 13.1 1570 1190 1200 114 170 163 11.8 14.2 5.11 Cl 325 78.5 60.9	130 133 195 118 48.5 235 236 277 3.68 25.5 6.99 HCO3 58.2 530.37 40.9	13.8 12 123 86.4 95.3 64.6 21.2 49.8 8.6 8.5 10.7 SO4 13.6 62.6 18.9	88.4 187 434 227 227 212 207 264 350 258 614 B 4230 1176 1005	n.a. n.a. n.a. n.a. n.a. 91.9 46.5 n.a. As n.a. n.a. 17.63	777 334 809 919 642 627 467 84.5 3 72.76 SiO2 406 1284 1022

POZO	FECHA	Gas Total (% weight)	Ar	CH4	CO ₂	H ₂	H ₂ S	He	N ₂	NH ₃	HCI	HF	* Reference
H-28	14/08/2002	3.8	39	0.12	97.8	0.02	1.61	n.a.	0.06	0.38	n.m.	n.m.	5
H-29	03/09/2002	4.5	140	0.16	98.2	0.03	1.5	n.a.	0.09	0.02	n.m.	n.m.	5
H-30	07/11/2002	2.56	139	0.05	94.8	0.02	5	n.a.	0.07	0.05	n.m.	n.m.	5
H-29	06/09/1989	8.23	n.a.	0.4	86.6	0.12	10.94	n.a.	1.88	0.07	n.m.	n.m.	5
H-29	13/10/1989	7.67	n.a.	8	88.5	0.11	9.08	n.a.	1.99	0.28	n.m.	n.m.	5
H-29	22/08/1991	0.81	331	0.62	79.6	0.1	16.74	n.a.	2.87	n.a.	n.m.	n.m.	5
H-43	15/09/2014	9.40	2383	0.12	88.9	0.35	6.00	n.a.	5.18	0.002	n.m.	n.m.	5
п-45 ц 42	20/00/2014	0.29	2090	0.25	00.2	0.30	0.09 E 06	n.d.	2.42	0.002	n.m.	n.m.	5
H-58	17/02/2014	2.74	203	0.17	90.2	0.39	5.33	11.a. 8.5	0.79	0.002	n.m.	n.m.	5
H-58	24/02/2017	3.44	146	0.1	95.4	0.07	3.55	63	0.75	0.01	n.m.	n m	5
H-58	27/02/2017	3.21	163	0.08	94.6	0.06	4.55	7	0.7	0.01	n.m.	n.m.	5
H-59	10/02/2017	1.57	880	0.03	88.7	0.29	6.06	n.a.	4.74	0.09	n.m.	n.m.	5
H-59	17/02/2017	1.77	800	0.2	87.9	0.27	6.75	n.a.	4.83	0.01	n.m.	n.m.	5
H-59	24/02/2017	0.88	1175	0.05	85.7	0.41	6.9	n.a.	6.67	0.15	n.m.	n.m.	5
H-11	22/10/1987	n.m.	n.a.	0.07	95.6	0.57	3.58	n.a.	0.05	0.18	n.m.	n.m.	1
H-16	14/07/1987	n.m.	n.a.	3.26	82.6	3.1	9.71	n.a.	1.07	0.3	n.m.	n.m.	1
H-16R	13/10/1989	n.m.	n.a.	2.08	84.4	1.69	10.53	n.a.	1.18	0.11	n.m.	n.m.	1
H-16R	05/04/1994	n.m.	n.a.	2	86.3	0.79	9.21	n.a.	0.77	0.94	n.m.	n.m.	1
H-17	21/10/1987	n.m.	n.a.	0.45	90.1	2.73	6.35	n.a.	0.19	0.18	n.m.	n.m.	1
H-3	13/04/1994	n.m.	300	0.27	93.5	0.75	2.75	n.a.	2.19	0.5	239	219	2
H-9	14/04/1994	n.m.	300	3.37	85.7	1.4	7.03	n.a.	1.45	0.98	18	33.6	2
H-11	14/04/1994	n.m.	50	0.43	96.2	0.21	2.56	9.5	0.33	0.23	195	36.2	2
H-15	13/04/1994	n.m.	260	3.91	86.4	1.23	7.32	n.a.	0.64	0.53	121	34	2
H-16	13/04/1994	n.m.	160	2.22	86.8	0.82	9.04	n.a.	0.76	0.31	136	43.8	2
H-17	14/04/1994	n.m.	80	1.25	91.4	0.45	5.9	4.4	0.44	0.57	195	73.6	2
H-28	14/04/1994	n.m.	50	0.68	95.8	0.27	2.47	4.1	0.34	0.4	224	32.1	2
H-30	13/04/1994	n.m.	290	2.52	82	1.15	12.3	n.a.	1.26	0.71	224	61.3	2
H-31	13/04/1994	n.m.	200	3.37	87.1	1.07	7.32	n.a.	0.8	0.37	62.2	20.3	2
POZO	FECHA	Gas Total (% weight)	Ar	CH_4	CO ₂	H ₂	H ₂ S	He	N ₂	$\rm NH_3$	HCI	HF	* Reference
H-32	14/04/1994	n.m.	80	1.31	91.4	0.41	6.1	2.7	0.38	0.36	298	36.9	2
H-33	13/04/1994	n.m.	240	1.75	86.4	0.91	9.05	n.a.	1.03	0.81	313	70.3	2
H-23	02/11/1987	4.45	n.a.	0.35	84.5	0.12	13.64	3.9	1.18	0.19	n.m.	n.m.	5
H-23	13/11/1987	4.53	n.a.	0.05	81.3	0.34	9.97	9.6	6.99	0.13	n.m.	n.m.	5
H-23	20/01/1988	5.17	n.a.	0.32	90.3	0.11	7.99	5.6	1.06	0.19	n.m.	n.m.	5
H-27	13/04/1989	4.67	n.a.	0.02	91.3	0.15	5.1	n.a.	3.03	0.42	n.m.	n.m.	5
H-27	19/05/1989	6.1	n.a.	0	93.3	0.1	4.05	n.a.	2.34	0.23	n.m.	n.m.	5
H-27	08/06/1989	6.6	n.a.	0.23	91.9	0.12	5.67	n.a.	1.74	0.32	n.m.	n.m.	5
H-49	07/04/2016	8.46	508	0.04	96.2	0.06	0.55	15.3	2.95	0.17	n.m.	n.m.	5
H-49	21/09/2016	8.93 c	471	0.02	94.3	0.05	1.89	12.4	3.34	0.33	n.m.	n.m.	5
H-49	25/01/2010	11.0	454	0.02	94.7	0.05	1.89	2.0	3.17	0.13	n.m.	n.m.	5
H-56	10/02/2017	18.5	25	0.09	99.5	0.03	0.07	3.0	0.27	0.00	n.m.	n.m.	5
H-56	17/02/2017	13.3	41	0.00	99.2	0.02	0.30	37	0.21	0.001	n.m.	n m	5
H-1	21/10/1987	8 72	na	0.06	96.3	0.03	2 95	na	0.23	0.37	n m	nm	1
H-7	21/10/1987	n.m.	n.a.	0.04	92.4	1.25	5.82	n.a.	0.11	0.37	n.m.	n.m.	1
H-8	22/10/1987	n.m.	n.a.	0.05	94.6	0.93	4.12	n.a.	0.1	0.24	n.m.	n.m.	1
H-10	21/10/1987	n.m.	n.a.	0.19	73.9	3.39	20.6	n.a.	0.87	1.1	n.m.	n.m.	1
H-19	22/10/1987	n.m.	n.a.	0.01	96.4	0.76	2.59	n.a.	0.12	0.16	n.m.	n.m.	1
H-23	22/10/1987	n.m.	n.a.	0.1	77.8	5.69	15.4	n.a.	0.17	0.88	n.m.	n.m.	1
H-1	14/04/1994	n.m.	20	0.16	98.2	0.12	1.09	12.8	0.23	0.2	416	57.1	2
H-7	14/04/1994	n.m.	120	0.31	92.8	0.45	5.05	10.2	0.93	0.42	32.7	24.1	2
H-8	14/04/1994	n.m.	110	0.44	94.7	0.37	3.69	7.2	0.63	0.21	209	54.1	2
H-19	12/04/1994	n.m.	30	0.06	95.9	0.16	3.3	7.8	0.37	0.23	62.2	54.3	2
H-20	12/04/1994	n.m.	80	1.9	89.7	0.59	7	n.d.	0.42	0.4	32.7	47.2	2
H-34	12/04/1994	n.m.	30	0.48	96.9	0.2	1.85	7.5	0.26	0.27	3	58.7	2
H-12	01/08/2014	13.2	15	0.74	96.6	0.1	2.43	n.a.	0.16	0.001	n.m.	n.m.	5
H-12	25/03/2015	9.46	20	0.89	94.3	0.1	4.54	n.a.	0.22	0.001	n.m.	n.m.	5
H-12	11/01/2017	10.7	32	0.51	96	0.06	2.8	n.a.	0.16	0.5	n.m.	n.m.	5
H-24	18/05/1989	6.42	n.a.	0.88	96.5	0.08	1.58	n.a.	0.65	0.34	n.m.	n.m.	5
H-41	21/01/2013	1.92	2174	0.73	85.7	0.27	11.74	n.a.	1.34	0.005	n.m.	n.m.	5
H-41	22/01/2014	4.2	2056	0.4	91.6	0.15	6.91	n.a.	0.72	0.002	n.m.	n.m.	5
POZO	FECHA	Gas Total (% weight)	Ar	CH_4	CO ₂	H ₂	H ₂ S	He	N ₂	NH ₃	HCI	HF	* Reference
H-41	25/01/2016	4.38	197	0.48	92.9	0.1	5.47	n.a.	0.36	0.72	n.m.	n.m.	5
H-6	22/10/1987	n.m.	n.a.	0.25	88	2.07	8.28	n.a.	0.78	0.6	n.m.	n.m.	1
H-12	22/10/1987	n.m.	n.a.	0.6	91.4	1.88	5.64	n.a.	0.16	0.34	n.m.	n.m.	1
H-18	22/10/1987	n.m.	n.a.	5.72	86.2	3.19	4.03	n.a.	0.41	0.44	n.m.	n.m.	1
H-6	14/04/1994	n.m.	90	1.7	91	0.56	5.9	n.a.	0.37	0.5	112	58	2

Table A7 -	- Chemical data fo	r fumaroles s	amples collect	ted in Los H	lumeros Geo	thermal Fiel	d (data are	expressed in	mmol/mol).	
#	Date	T(°C)	Ar	02	CH ₄	N ₂	CO ₂	H ₂ S	H ₂	СО
LB1	21/03/2018	92.8	1.08	6.2	1.1	70	850	58.9	3.572	0.005
LB1	24/03/2018	92.8	1.26	11.4	0.7	90.8	816	68.6	3.566	0.008
LB2	24/03/2018	92.0	7.74	134	1	523.6	314	21.3	0.989	0.022
XA1	24/03/2018	64.5	0.1	0.57	37.1	5.9	935	<0.3	3.553	0.01

ode	Date	δ ¹⁸ 0‰	õD%o	R/Ra	δ ¹³ C- CO ₂ (‰ vPDR)	* Reference
1	21/10/1987	-2.7	-65.1		0.001	1
H6	22/10/1987	-3.1	-70.9			1
H7	21/10/1987	-3.4	-67.2			1
HS	22/10/1987	-3.5	-69			1
H10	21/01/1987	-5.3	-72.4			1
H11	14/05/1987	-3.8	-68.1			1
H12	22/10/1987	-1.2	-60.5			1
H16	14/05/1987	-2.5	-69.9			1
H16	27/09/1988	-6.7	-80.4			1
H16R	24/11/1994	-8.22	-84.8			1
H17	14/05/1987	-3.72	-64.9			1
H17	21/10/1987	-4.5	-63.3			1
H17	28/09/1988	-3.48	-68.2			1
H18	22/10/1987	-2	-49.4			1
H19	22/10/1987	-4.3	-68.8			1
H2.3	22/10/1987	-2.5	-66.4			1
H1		-4.8	-69			2
H2		-3.8	-70			2
H3		-2.66	-61.5			2
H4	4.0.104.14.0.00	-3.7	-65			2
H29	10/01/1992	1	-4/			2
m38 H02	een 15	-1 94	-46	6.25	_5 1 2	2
H05-	gen-15	-1.86	-62.5	0.55	-5.13	3
H00a	gen-15	-5.5	-05./	7.52	-3.885	3
H17	gen-15	-0.08	-57.1	6.95	-5.029	2
H1F	800-15	-2.37	-66.7	6.00	-3.005	2
H17	5en-15	0.24	-00.5	6.09	-2.700	3
H19=	gen-15	-3.19	-64.8	7.27	-3.09	3
H20	gen-15	-3.51	-68.7	7.29	-2.236	3
H30	gen-15	-4.05	-65	7	-3 867	3
H31	gen-15	-3.55	-63.6	7.18	-3.846	3
H33	gen-15	-4.63	-63.6	6.69	n.d.	3
H34	gen-15	-2.65	-61.6	7.18	-5.25	3
H35	gen-15	n.d.	n.d.	7.09	-4.437	3
H41	gen-15	n.d.	n.d.	6.13	-3.389	3
H42	gen-15	-0.66	-59.8	6.42	n.d.	3
H44	gen-15	-0.66	-51.6	6.64	-2.481	3
H45	gen-15	-5.1	-67.4	7.22	-2.793	3
H48d	gen-15	-4.38	-69.6	6.8	-3.285	3
H49	gen-15	-0.8	-52.1	7.28	-3.013	3
H-1	14/05/1987	-2.71	-77.6			4
H1	29/09/1988	-2.35	-72.3			4
H6	14/05/1987	-2.09	-67.8		42	4
		-18	Text		δ ¹³ C-	
code	Date	00%	00%	кука	CO2(%	Reference
uс	70/00/1000	2 0 0	-70.9		VPDB)	4
H7	1//05/1987	-3.18	-70.8			4
H7	29/09/1988	-2.91	-70.3			4
HS	14/05/1987	-2.89	-77.5			4
HS	28/09/1988	-3.42	-71.7			4
H9	14/05/1987	-1.47	-62.1			4
H9	27/09/1988	-1.63	-68			4
H10	14/05/1987	-3.56	-66			4
H10	29/09/1988	-4.93	-68			4
H11	14/05/1987	-2.52	-68			4
H11	29/09/1988	-2.84	-64.3			4
H12	14/05/1987	-1.38	-60.1			4
H12	29/09/1988	-3.21	-67.3			4
H13	29/09/1988	-2.2	-71.9			4
H15	28/09/1988	-3.23	-68.4			4
H14	14/05/1987	-4.1	-/0.4			4
m16	27/09/1988	-6./	-81.6			4
H17	28/09/198/	-3.72	-64.5			4
H19	1//05/1905	-1.97	_16			4
H18	29/09/1989	-7.81	-40			4
	14/05/1987	-2.96	-60.4			4
H19	28/00/1088	-4	-71.3			4
H19 H20	20/03/1300	2.20	-66.2			4
H19 H20 H27	29/09/1988	-3.29				5
H19 H20 H27 H-15	29/09/1988 14/10/2013	-5.69	-65.04			-
H19 H20 H27 H-15 H-17	29/09/1988 29/09/1988 14/10/2013 14/10/2013	-5.69 -5.47	-65.04 -66.86			
H19 H20 H27 H-15 H-17 H-30	29/09/1988 29/09/1988 14/10/2013 14/10/2013 14/10/2013	-5.69 -5.47 -5.84	-65.04 -66.86 -67.76			5
H19 H20 H27 H-15 H-17 H-30 H-31	29/09/1988 29/09/1988 14/10/2013 14/10/2013 14/10/2013 14/10/2013	-5.69 -5.47 -5.84 -5.65	-65.04 -66.86 -67.76 -68.79			5
H19 H20 H27 H-15 H-17 H-30 H-31 H-33	29/09/1988 29/09/1988 14/10/2013 14/10/2013 14/10/2013 14/10/2013 14/10/2013	-5.69 -5.69 -5.84 -5.65 -4.43	-65.04 -66.86 -67.76 -68.79 -63.06			5 5 5
H19 H20 H27 H-15 H-17 H-30 H-31 H-33 H-3	29/09/1988 29/09/1988 14/10/2013 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013	-5.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57	-65.04 -66.86 -67.76 -68.79 -63.06 -63.97			5 5 5 5
H19 H20 H27 H-15 H-30 H-31 H-33 H-3 H-3	29/09/1988 29/09/1988 14/10/2013 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013	-5.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8	-65.04 -66.86 -67.76 -68.79 -63.06 -63.97 -61.16			5 5 5 5 5 5
H19 H20 H27 H-15 H-30 H-31 H-33 H-33 H-35 H-9	29/09/1988 29/09/1988 14/10/2013 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013	-3.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05	-65.04 -66.86 -67.76 -68.79 -63.06 -63.97 -61.16 -61.88			5 5 5 5 5 5 5
H19 H20 H27 H-15 H-30 H-31 H-33 H-3 H-3 H-3 H-3 H-3 H-3 H-3 H-3 H-	29/09/1988 29/09/1988 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 15/10/2013	-3.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05 -2.95	-65.04 -66.86 -67.76 -68.79 -63.06 -63.97 -61.16 -61.88 -64.91			5 5 5 5 5 5 5 5 5
H19 H20 H27 H-15 H-30 H-31 H-33 H-3 H-3 H-35 H-9 H-11 H-32	29/09/1988 29/09/1988 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 15/10/2013 16/10/2013	-3.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05 -2.95 -2.39	-65.04 -66.86 -67.76 -68.79 -63.06 -63.97 -61.16 -61.88 -64.91 -72.18			5 5 5 5 5 5 5 5 5 5 5
H19 H20 H27 H-15 H-30 H-31 H-33 H-33 H-3 H-35 H-9 H-11 H-32 H-34	29/09/1988 29/09/1988 14/10/2013 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 16/10/2013 16/10/2013	-3.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05 -2.95 -2.39 -3.15	-65.04 -66.86 -67.76 -68.79 -63.06 -63.97 -61.16 -61.88 -64.91 -72.18 -65.87			5 5 5 5 5 5 5 5 5 5 5 5 5
H19 H20 H27 H-15 H-30 H-31 H-33 H-3 H-3 H-35 H-9 H-11 H-32 H-34 H-34 H-44	29/09/1988 29/09/1988 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 16/10/2013 16/10/2013 16/10/2013	-3.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05 -2.95 -2.39 -3.15 -3.79	-65.04 -66.86 -67.76 -68.79 -63.06 -63.97 -61.16 -61.88 -64.91 -72.18 -65.87 -62.08			5 5 5 5 5 5 5 5 5 5 5 5 5
H19 H20 H27 H-15 H-30 H-31 H-33 H-33 H-35 H-9 H-11 H-32 H-34 H-34 H-44 H-19	29/09/1988 29/09/1988 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 15/10/2013 16/10/2013 16/10/2013 16/10/2013	-3.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05 -2.95 -2.39 -3.15 -3.79 -3.55	-65.04 -66.86 -67.76 -68.79 -63.06 -63.97 -61.16 -61.88 -64.91 -72.18 -65.87 -62.08 -63.87			5 5 5 5 5 5 5 5 5 5 5 5 5 5
H19 H20 H27 H-15 H-30 H-31 H-33 H-33 H-35 H-9 H-11 H-32 H-34 H-44 H-19 H-19 H-20	29/09/1988 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 15/10/2013 16/10/2013 16/10/2013 16/10/2013 17/10/2013	-3.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05 -2.95 -2.39 -3.15 -3.79 -3.55 -4.1	-65.04 -66.86 -67.76 -68.79 -63.06 -63.97 -61.18 -61.88 -64.91 -72.18 -65.87 -62.08 -63.87 -68.06			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
H19 H20 H27 H-15 H-17 H-30 H-31 H-33 H-35 H-3 H-35 H-3 H-31 H-35 H-31 H-32 H-34 H-44 H-19 H-20 H-37	26/03/1586 26/03/1586 14/10/2013 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 15/10/2013 16/10/2013 16/10/2013 17/10/2013 17/10/2013 17/10/2013	-5.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05 -2.95 -3.15 -3.79 -3.55 -4.1 -6.04	-65.04 -66.86 -67.76 -68.79 -63.06 -63.97 -61.16 -61.88 -64.91 -72.18 -65.87 -62.08 -63.87 -68.06 -72.86			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
H19 H20 H27 H-15 H-17 H-30 H-31 H-33 H-35 H-9 H-11 H-32 H-34 H-44 H-19 H-20 H-37 H-41	26/03/1506 22/08/1586 14/10/2013 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 16/10/2013 16/10/2013 16/10/2013 17/10/2013 17/10/2013 17/10/2013	-3.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05 -2.95 -2.39 -3.15 -3.79 -3.55 -4.1 -6.04 -4.15	-65.04 -66.86 -67.76 -63.99 -63.97 -61.16 -61.88 -64.91 -72.18 -65.87 -62.87 -62.87 -63.87 -63.87 -63.87 -63.87 -63.86 -72.86 -66.09			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
H19 H20 H27 H-15 H-17 H-30 H-31 H-33 H-35 H-9 H-11 H-32 H-34 H-44 H-19 H-20 H-37 H-41 H-42	26/03/1500 29/08/1988 14/10/2013 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 16/10/2013 16/10/2013 16/10/2013 17/10/2013 17/10/2013 17/10/2013	-3.29 -5.89 -5.47 -5.84 -5.65 -4.43 -2.57 -2.88 -3.05 -2.95 -2.39 -3.15 -3.79 -3.55 -4.1 -6.04 -4.15 -4.18	-65.04 -66.86 -67.76 -63.97 -63.06 -63.97 -61.16 -61.88 -64.91 -72.18 -65.87 -62.08 -63.87 -63.87 -63.87 -63.06 -72.86 -66.09 -65.94			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
H19 H20 H27 H-15 H-17 H-30 H-31 H-33 H-33 H-35 H-35 H-35 H-34 H-44 H-19 H-20 H-37 H-41 H-42 H-42 H-42 H-45	22/03/1566 22/03/1566 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 15/10/2013 16/10/2013 16/10/2013 16/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013	-3.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05 -2.95 -2.95 -3.15 -3.79 -3.15 -3.79 -3.55 -4.1 -6.04 -4.15 -4.18 -4.18 -5.17	-65.04 -66.86 -67.76 -63.97 -61.16 -61.88 -64.91 -72.18 -65.87 -62.08 -63.87 -62.08 -63.87 -63.87 -63.06 -72.86 -66.09 -65.94 -65.78			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
H19 H20 H27 H-15 H-17 H-30 H-31 H-33 H-33 H-33 H-35 H-9 H-11 H-32 H-34 H-44 H-19 H-20 H-37 H-41 H-42 H-45 H-65 H-65 H-65 H-65 H-65 H-65 H-65 H-6	26/03/1566 22/08/1586 14/10/2013 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 15/10/2013 16/10/2013 16/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013	-3.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05 -2.95 -2.39 -3.15 -3.79 -3.55 -4.1 -6.04 -4.15 -4.18 -5.17 -3.59	-65.04 -66.86 -67.76 -63.06 -63.97 -61.16 -64.91 -72.18 -64.91 -72.18 -65.87 -62.08 -63.87 -63.87 -63.87 -63.06 -72.86 -66.99 -65.78 -65.78 -65.16			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
H19 H20 H27 H-15 H-17 H-30 H-31 H-33 H-33 H-34 H-34 H-34 H-44 H-42 H-44 H-42 H-45 H-6 H-12	26/03/1506 22/08/1586 14/10/2013 14/10/2013 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 16/10/2013 16/10/2013 16/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013	-3.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05 -2.39 -3.15 -3.79 -3.15 -3.79 -3.15 -4.1 -6.04 -4.15 -4	-65.04 -66.86 -67.76 -63.06 -63.97 -61.16 -61.89 -72.18 -64.91 -72.18 -65.87 -62.08 -63.87 -63.87 -63.87 -63.86 -72.86 -65.94 -65.78 -65.16 -65.78			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
H19 H20 H27 H-15 H-17 H-30 H-31 H-33 H-31 H-33 H-31 H-34 H-34 H-44 H-19 H-41 H-42 H-45 H-6 H-12 H-39	22/03/156 22/03/156 22/03/156 14/10/2013 14/10/2013 14/10/2013 15/10/2013 15/10/2013 15/10/2013 15/10/2013 16/10/2013 16/10/2013 16/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013 17/10/2013 18/10/2013	-3.29 -5.69 -5.47 -5.84 -5.65 -4.43 -2.57 -2.8 -3.05 -2.95 -2.39 -3.15 -3.79 -3.55 -4.1 -6.04 -4.15 -4.18 -5.17 -3.59 -4.09 -0.48	-65.04 -66.86 -67.76 -63.06 -63.97 -61.16 -61.88 -64.91 -72.18 -62.08 -63.87 -62.08 -63.87 -65.94 -65.94 -65.78 -66.09 -65.94 -65.78 -66.09 -63.09 -61.25			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

DEVELOPMENTS OF AUXILIARY CHEMICAL GEOTHERMOMETERS APPLIED TO THE LOS HUMEROS AND ACOCULCO HIGH-TEMPERATURE GEOTHERMAL FIELDS (MÉXICO)

3.1 Introduction

The knowledge of the temperature of the deep geothermal fluids, rock permeability and water reservoir capacity are three key parameters for developing deep geothermal energy. Since 1965, one of the major applications of fluid geochemistry in the exploration of the potential geothermal reservoirs involves estimation of their temperature using classical chemical, isotope and gas geothermometers on fluids collected from geothermal wells and thermal springs, such as:

- Na-K (Fournier 1979; Michard, 1979; Giggenbach, 1988), Na-K-Ca (Fournier and Truesdell, 1973), K-Mg (Giggenbach, 1988), SiO₂ (Fournier and Rowe, 1966; Fournier, 1977; Michard, 1979);
- δ¹⁸O_{H2O-SO4} (Lloyd, 1968; Mizutani and Rafter, 1969; Kusakabe and Robinson, 1977; Sakaï, 1977; Seal *et al.*, 2000; Zeebe, 2010; Boschetti, 2013);
- CO₂-CH₄-H₂S-H₂, CO₂-CH₄-H₂, CO₂-CH₄, H₂-Ar, CO₂-Ar (D'Amore and Panichi, 1980; Marini, 1987; Giggenbach and Goguel, 1989; Giggenbach, 1987, 1991).

Most of the solute geothermometers are based on empirical or semi-empirical laws derived from known or unknown chemical equilibrium reactions between water and minerals occurring in the geothermal reservoirs. Unfortunately, these classical tools do not always yield concordant estimations of reservoir temperatures, even at very high temperatures, in acidic environments, for example. Discrepancies in temperature estimates may also be due to different processes occurring during the geothermal fluid ascent up to the surface and its cooling: mixing with surface cold waters or seawater, degassing, precipitation/dissolution processes, etc.

Since the early 1980s, numerical multicomponent geochemical models are also being developed for direct application to chemical geothermometry for geothermal exploration (Reed, 1982; Michard and Roeckens, 1983; Reed and Spycher, 1984; Spycher *et al.*, 2014; Peiffer *et al.*, 2014a). These models allow numerical calculations of equilibration temperature of the geothermal water with respect to a suite of reservoir minerals, and thus the estimation of the

reservoir temperature. Multicomponent geothermometry is not intended to replace classical geothermometers, but rather to supplement these geothermometers, and by doing so to increase confidence in temperature estimations. However, such approach cannot be applied carelessly and without a sound conceptual understanding of the area being studied (Al and pH poorly determined, for example). For this approach, a state of full chemical equilibrium is necessary and the conditions of this equilibrium state are not always reached.

Since the early 1980s, in parallel, several auxiliary geothermometers combining a major with a trace element, like Na-Li (Fouillac and Michard, 1981; Kharaka *et al.*, 1982; Michard, 1990; Sanjuan *et al.*, 2014), Mg-Li (Kharaka and Mariner, 1989), Na-Rb, Na-Cs, K-Sr, K-Mn, K-Fe, K-F and K-W (Michard, 1990; Sanjuan *et al.*, 2016a, b; 2017), have been also developed and are available for specific types of geothermal fluids and geological environments.

BRGM aims to develop and validate this type of auxiliary chemical geothermometers and the $\delta^{18}O_{H2O-SO4}$ isotope geothermometers in order:

- to improve the geochemical methods for geothermal exploration in volcanic fields such as Los Humeros and Acoculco, with high-temperature (HT) and relatively low permeability;
- to acquire a better knowledge about the circulation of HT deep fluids and their possible interaction with more superficial waters in this type of geothermal fields, from chemical and isotopic water analyses from surface thermal springs.

In the Los Humeros field, where numerous deep wells were drilled and are presently producing, the temperature values measured at the bottom-hole and estimated using classical water and gas geothermometers, will be used to test and calibrate these auxiliary geothermometers on the fluids collected from the deep geothermal wells. Some neighbouring thermal springs will be also sampled.

In the Acoculco field, where only two deep wells were drilled (EAC-1 in 1994, at a depth of 2000 m, and EAC-2 in 2008, at a depth of 1900 m, 500 m east of EAC-1; Peiffer *et al.*, 2014b), but were not productive, these auxiliary geothermometers will be applied on fluids collected from surface thermal springs.

The temperatures estimated for the waters collected from the thermal springs during this study will be compared with those given by the classical gas and water geothermometers, with reference to the deep temperatures close to 290-330°C measured at a depth of about 2000 m in both los Humeros (Arellano *et al.*, 2003; Pinti *et al.*, 2017) and Acoculco fields (Peiffer *et al.*, 2014b). These temperatures correspond to a gradient of 14°C/100 m, three times higher than the baseline gradient measured within the Trans-Mexican Volcanic Belt (Ziagos *et al.*, 1985).

In order to be able to obtain relevant results, the BRGM activities have been planned as follows:

- a preliminary literature review relative to the geological, geophysical and geochemical data about the Los Humeros and Acoculco geothermal fields, with the collaboration of the other partners, especially the Mexican partners (CFE, for example), in order to collect the main geological information and most of the geochemical data of the fluids sampled from Los Humeros deep wells and from thermal Acoculco springs);
- the participation to a campaign of fluid sampling and on site measurements in the Los Humeros and Acoculco geothermal areas (from deep wells at Los Humeros and from thermal springs at Acoculco), with the collaboration of CNR (Matteo Lelli's team) and Mexican teams (Ruth Alfaro, CFE...);
- chemical (major and some trace species) and isotope (δ¹⁸O_{H2O}, δ¹⁸O_{SO4}, δ¹¹B, δ⁷Li, ⁸⁷Sr/⁸⁶Sr...) analyses of the waters collected during the campaign of fluid sampling, in the BRGM laboratories ;
- data interpretation, including the use of thermodynamic considerations, and main conclusions.

3.2 Literature review

Several interesting papers have been found during the literature review carried out by BRGM, among which the main ones are:

- Arzate et al. (2018), Peiffer et al. (2018), Carrasco-Núñez et al. (2018, 2017a and b), Pinti et al. (2017), García-Soto et al. (2016), Norini et al. (2015), Arellano Gomez et al. (2003, 2008, 2015), Bernard et al. (2011); García-Gutiérrez (2009), Barragán-Reyes et al. (2008, 2010), Gutiérrez-Negrín and Izquierdo-Montalvo (2010), Izquierdo et al. (2008, 2009), Lopez Romero (2006), Martínez-Serrano (2002), Portugal et al. (2002), Prol-Ledesma (1998), and Cortés et al. (1997) for the Los Humeros geothermal field;
- Sosa-Ceballos *et al.* (2018), Avellán *et al.* (2017), García-Palomo *et al.* (2017), Canet *et al.* (2010, 2015a, 2015b), Peiffer *et al.* (2014b, 2015), Lermo *et al.* (2009), Lopez-Hernández *et al.* (2009), Verma (2001), Lopez-Hernández and Castillo-Hernández (1997), Tello Hijonosa *et al.* (1995), Tello Hijonosa (1986, 1987, 1991), Ledezma-Guerrero (1987) for the Acoculco geothermal field.

3.2.1 Los Humeros geothermal field

The main existing data of fluids from geothermal wells and neighbouring thermal springs used for this study are presented below.

Documents and Excel sheets provided by CFE in 2017 have allowed to collect geological, temperature and pressure logs from 16 wells located in the Los Humeros geothermal field (wells

H-5, H-12, H-22, H-23, H-24, H-25, H-26, H-27, H-28, H-29D, H-41, H-43, H-49, H-56, H-58, H-59). Fluid and gas geochemical data collected between 1987 and 2017 are available for only 13 of these wells (absence of data for the wells H-5, H-25 and H-26). Measurements of water stable isotopes (δD and $\delta^{18}O$) have been performed by CFE, between 2013 and 2016, on fluids from 29 wells (wells H-3, H-6, H-7, H-9, H-11, H-12, H-13R, H-15, H-17, H-19, H-20, H-29, H-30, H-31, H-32, H-33, H-34, H-35, H-37, H-38R, H-39, H-40, H-41, H-42, H-43, H-44, H-45, H-48, H-49).

Chemical data for two neighbouring thermal springs (El Tesoro and Noria Nuevo Pizarro) were also found in the tables of fluid monitoring given by CFE.

Detailed fluid geochemical data from the geothermal wells of Los Humeros field and neighbouring springs are also given by:

- Prol-Ledesma (1998) during pre- and post- exploitation of the Los Humeros geothermal field (gas and water chemical and isotopic data from deep wells, including the stable isotopes of water and δ^{18} O values of dissolved sulphates);
- Arellano-Gomez *et al.* (2003) for five deep wells (H-1, H-6, H-7, H-8 and H-12), including gas and water chemical and isotopic data (water stable isotopes);
- Barragan-Reyes *et al.* (2010) for several deep wells (stable isotopes of water and gas chemical composition), and neighbouring springs (stable isotopes of water);
- Bernard *et al.* (2011) for several deep wells (water chemical and isotopic data, with boron isotopic data for 4 water samples);
- Pinti *et al.* (2017) for several deep wells (He, Ne and Ar noble gas isotopic abundances, with stable isotopes of water).

The geological and geothermal setting are presented in Chapter 1. The figure 3.2.1.1a, extracted from Pinti *et al.* (2017), and the figure 3.2.1.1b, extracted from Carrasco *et al.* (2017a), show a general view of the location of most of the Los Humeros geothermal wells.

Figure 3.2.1.1 - a) Simplified tectonic map of the central part of the Los Humeros caldera with the major faults and the position of the production and re-injection wells (from Pinti et al., 2017). b) Location of the main geothermal wells within Los Humeros geothermal field (from Carrasco et al., 2017a).

From the geothermal reservoir consisted of medium-to low-permeability pre-caldera andesites, the wells produce biphasic fluid, with variable but high fractions of steam and limited liquid water contents, with enthalpy values over 2400 kJ/kg (Gutiérrez-Negrín and Izquierdo-Montalvo, 2010), except for some wells as H-1, which has always produced water with a low enthalpy of 1500-1700 kJ/kg. Some geothermal fluids reach 400°C in the northern production area.

3.2.2 Acoculco geothermal area

Geochemical data for waters sampled from 39 thermal springs located in the Acoculco geothermal area, with temperature values ranging from 13 to 49°C, have been collected in the CFE report 34-86 (Tello Hinojosa, 1986). Chemical data for 10 gas samples from the Acoculco caldera are also presented in this report. All these data have been interpreted by Tello Hijonosa (1986), and some main conclusions and recommendations were given. Some of these data were also presented and interpreted by Lopez-Hernández *et al.* (2009). Partial chemical data (pH, Na, K, SO₄, B) are presented for samples of drilling fluid collected from the EAC-1 exploration well in the Acoculco area, in a CFE document (Tello Hijonosa *et al.*, 1995).

Peiffer *et al.* (2014b) have reported geochemical data for waters from four Acoculco thermal springs and associated non-condensable gases (fig. 3.2.2.1). They integrated some of the previous data obtained by Tello Hijonosa (1986), interpreted all the results and drew up some

main conclusions, among which the estimation of deep temperatures ranging from 243 to 353°C, using gas geothermometry (CO₂-Ar, CH₄-CO₂, CO₂ and H₂S). These values are in agreement with the measured well bottom hole temperatures (267 and 300°C). They might explain the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks, with most abundant alteration minerals being quartz, amorphous silica, calcite, pyrite, clays (illite, smectite, kaolinite), and hematite.

The presence of a deep-water reservoir was not revealed during the EAC-1 drilling (depth of 2000 m), in 1994, in the locality of Los Azufres. However, a few permeable layers, at depths of 70 m and 300-450 m, and inflow of warm water together with significant amount of gas were observed (López-Hernández and Castillo-Hernández, 1997; López-Hernández *et al.*, 2009). The second well of 1900 m deep (EAC-2), drilled in 2008, 500 m east of EAC-1, showed a promising deep temperature of 267°C accompanied by low permeability similar to that of the EAC-1 well.

Figure 3.2.2.1 - a) Location of the Acoculco caldera within the Trans-Mexican Volcanic Belt (TMVB) and schematic map of the Tulancingo-Acoculco caldera complex with the position of the main fault systems, thermal springs and the two exploration wells (modified in Peiffer et al., 2014b, after López-Hernández et al., 2009).

According to Peiffer *et al.* (2014b), the high grade of alteration of the volcanic deposits induces low rock permeability and acts as a caprock probably impeding the recharge of the system by meteoric waters (López-Hernández *et al.*, 2009), and causing the absence of thermal manifestations within the caldera complex. Instead, springs with close to ambient temperatures

are reported as well as hydrothermally altered grounds, cold diffuse soil degassing and bubbling pools (Polak *et al.*, 1982; Tello-Hijonosa, 1986; Bernard-Romero, 2008).

Cold degassing is probably due to conductive cooling of the deep gases on their way to the surface. Los Azufres, where EAC-1 well was drilled, and Alcaparrosa are the only two regions with noticeable active degassing (H₂S smell), bubbling pools and springs with temperatures of 16-25°C (fig. 3.2.2.1). The only springs with temperature significantly above the ambient temperature are located outside the caldera towards the east and south-east at Chignahuapan (49°C, inside a thermal bath resort), Quetzalapa (30°C), Jicolapa (32°C) and El Rincón (32°C; fig. 3.2.2.1). Apart from Chignahuapan spring, all these springs are characterized by bubbling. The geological and geothermal setting are presented in Chapter 1.

3.2.3 Main remarks

If all the dissolved major species (Na, K, Ca, Mg, HCO₃, Cl, SO₄, SiO₂) and stable water isotopes (δD and $\delta^{18}O$) were determined among most of the existing geochemical data, few trace elements (only B, Li, F, NH₄, Fe, Al and As) were studied. Very few data were also found for $\delta^{18}O_{SO4}$ and $\delta^{11}B$ values, and ${}^{87}Sr/{}^{86}Sr$ ratios. No value was found for $\delta^{7}Li$ values. The campaign of fluid sampling planned by BRGM was therefore very important and necessary to test and develop our auxiliary chemical geothermometers, integrating trace elements such as Rb, Cs, Sr, Mn, F and W, and the $\delta^{18}O_{H2O-SO4}$ geothermometer. It has also contributed to acquire new isotopic data of $\delta^{11}B$ and $\delta^{7}Li$ values.

The table 3.2.3.1 summarizes the existing chemical and isotopic data obtained on the scarce thermal waters of the Los Humeros and Acoculco areas.

Thermal spring	Date	т	Cond.	pН	Na	к	Ca	Mg	HCO ₃	CI	SO_4	SiO ₂	F	в	NH_4	Li	Rb	Cs	Fe	AI	TDS	δD	δ ¹⁸ Ο	Reference
		°C	µS/cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	g/l	‰	‰	
El Tesoro	06/03/2015	15	791	8.1	87.4	11.1	10.9	26.0	396	58.6	10.2	58.1				0.089					0.7			CFE monitoring (database table)
El Tesoro	13/10/2015	14	774	7.2	83.7	11.3	47.3	23.5	390	58.6	5.8	31.9									0.7			CFE monitoring (database table)
El Tesoro	15/04/2016	16	762	6.6	82.9	10.2	42.8	34.1	380	49.6	1.8	55.0				0.067					0.7			CFE monitoring (database table)
El Tesoro	17/11/2016	23	783	7.8	79.3	9.8	39.7	30.4	405	60.1	3.4	63.8				0.072					0.7			CFE monitoring (database table)
El Tesoro	27/02/2017	15	791	8.1	87.4	11.1	10.9	26.0	396	58.6	10.2	58.1				0.089					0.7			CFE monitoring (database table)
Nuevo Pizarro (Noria)	16/10/2015		1686	7.3	303	26.1	31.4	18.9	498	208	99.0	21.3		2.47		0.378					1.2			CFE monitoring (database table)
Nuevo Pizarro (well)	25/02/2015	17	1758	7.3	360	1.21	19.4	1.52	552	211	124	29.5		2.50							1.3			CFE monitoring (database table)
Nuevo Pizarro (well)	09/11/2016	17	1737	7.1	312	28.9	37.1	25.1	708	195	98.0	44.7		3.20		0.375					1.5			CFE monitoring (database table)
Nuevo Pizarro (well)	09/02/2017	17	1758	7.3	360	1.21	19.4	1.52	552	211	124	29.5		2.50							1.3			CFE monitoring (database table)
Nuevo Pizarro (spring)	13/04/2016	17	1763	6.7	295	29.4	35.2	30.4	522	169	11.8	17.7		2.30		0.411					1.1			CFE monitoring (database table)
Baños Chignahuapan	21-25/04/2006	47.5		7.0	87.0	14.0	196	26.0	735	106	28.0	19.0	0.7	1.80	0.5	0.360					1.2	-70	-10.4	Peiffer et al. (2014)
Baños Chignahuapan	02/07/1986	49	1440	6.5	95.4	14.4	173	30.6	831	118	39.0	24.3		3.20	2.0	0.372	< 0.1	< 0.1	< 0.5		1.3	-69	-9.6	Tello Hijonosa (1986)
Baños Quetzalapa	18/06/1986	32	1942	5.8	157	18.6	193	47.9	1479	23.5	0	53.6		0.74	2.0	0.149	< 0.1	< 0.1	< 0.5		2.0	-60	-8.7	Tello Hijonosa (1986)
Agua Salada	03/07/1986	21	2070	6.5	435	70.5	79.1	34.6	1459	192	0	85.0		34.5	0.24	0.216	< 0.1	< 0.1	0.7		2.4			Tello Hijonosa (1986)
Capulines	01/07/1986	20	1030	6.0	77.9	18.4	77.0	76.0	716	5.9	16.3	52.9		0.80	< 0,1	0.131	< 0.1	< 0.1	< 0.5		1.0			Tello Hijonosa (1986)
El Rincón	19/06/1986	32	878	5.6	12.9	12.9	144	10.3	500	9.8	36.9	64.7		0.09	1.6	< 0.1	< 0.1	< 0.1	< 0.5		0.8	-65	-9.3	Tello Hijonosa (1986)
Baños Jicolapa	21-25/04/2006	25.4		6.2	29.0	15.0	265	12.0	894	7.7	0	63.0	0.6	1.00	0.1						1.3	-66	-10.2	Peiffer et al. (2014)
Baños Jicolapa	03/07/1986	32	1381	6.5	31.4	15.6	230	17.2	927	17.6	0	66.9		1.25	0.4	< 0.1	< 0.1	< 0.1	< 0.5		1.3	-67	-9.5	Tello Hijonosa (1986)
Los Azufres	21-25/04/2006	21.4		5.5	55.0	15.0	56.0	11.0	137	7.8	218	33.2	0.2	2.00	7.8						0.5	-72	-10.5	Peiffer et al. (2014)
Los Azufres	25/06/1986	25	1214	6.0	124	28.4	99.8	29.8	0	37.2	2298	31.3		167	94	< 0.1	< 0.1	< 0.1	< 0.5		2.9			Tello Hijonosa (1986)
Los Azufres	25/06/1986	25	829	6.6	17.7	30.1	64.4	15.8	47.5	19.6	211	36.8		36.6	86	< 0,1	< 0.1	< 0.1	2.66	4.49	0.6	-68	-8.1	Tello Hijonosa (1986)
Los Azufres	25/06/1986	25	1931	7.0	332	36.5	198	79.4	1231	94.1	340	23.4		266	81	0.159	< 0.1	< 0.1	< 0.5	0	2.7			Tello Hijonosa (1986)
Cuadro de Fierro	20/06/1986	23	1876	3.4	42.3	13.6	145	87.2	0	13.7	1245	32.5		1.48	7.6	< 0.1	< 0.1	< 0.1	7.5	64	1.6	-79	-10.8	Tello Hijonosa (1986)
Alcaparrosa	29/05/2013	17		2.4	15.8	8.5	9.7	1.3	0	2.2	538	52.0									0.6			Peiffer et al. (2014)
Alcaparrosa	21-25/04/2006	12.2		2.4	11.0	6.7	10.0	1.6	0	8.6	515	53.0									0.6	-69	-10.7	Peiffer et al. (2014)
Alcaparrosa	24/06/1986	15	1945	2.2	13.7	9.48	36.4	9.2	0	13.7	1272	63.8		12.6	9.8	< 0.1	< 0.1	< 0.1	< 0.5		1.4	-68	-9.4	Tello Hijonosa (1986)

 Table 3.2.3.1 - Existing chemical and isotopic data of the main thermal springs discharging from the Los
 Humeros and Acoculco geothermal areas, with literature references.

3.3 Water sampling and analytical results

3.3.1 Water sampling

The campaign of water sampling was carried out by BRGM, in collaboration with CFE, University of Michoacana and CNR Lelli's team, from March 20 to 28, in the Los Humeros and Acoculco geothermal fields (fig. 3.3.1.1). Fluid samples were collected from seven geothermal wells and four thermal springs located in the Los Humeros area, from eight thermal springs located in the Acoculco area, and from three neighbouring crater lakes (lagunas), as points of surface reference. Their locations are reported in figure 3.3.1.1 and in table 3.3.1.1.

Figure 3.3.1.1 - Location of the geothermal wells and thermal springs which were sampled during the campaign of water sampling carried out by BRGM between March 22 and 28, 2018, in the Los Humeros and Acoculco areas.

Among the two-phase geothermal waters from Los Humeros field, very rich in steam, those which indicated the most high fractions of liquid water were selected with the valuable help of CFE (table 3.3.1.1).

Collection of the fluid samples in the field was accompanied by appropriate on-site measurements such as water temperature, conductivity, pH redox potential and alkalinity. The temperature, conductivity, pH and redox potential measurements were performed on the raw water samples, whereas alkalinity was analysed on fluid samples filtered at 0.45 μ m. Absolute uncertainty concerning the pH measurements was 0.05 pH units and relative uncertainty concerning the other parameters varied from 5% to 10%, depending on the parameter and the range of measured values. All these measurements are given in table 3.3.1.1.

Area	Sampling point	Specific enthalpy	Loca	ition	Location (E	D50 UTM Nort	h zone 14)	Depth	Date	т	Cond. 25°C	pН	Eh	Alk.	Alk.
		J/g	Longitude (°E WGS84)	Latitude (°N WGS84)	x	Y	Z (m)	m		°C	µS/cm	·	mV	meq/l	mg/I HCO ₃
Los Humeros area	Los Humeros H-39		-97.44192672	19.64813614	663433	2173524	2901	2890	22/03/2018 12:00	61.9	591	7.14	-260	4.45	272
	Los Humeros Unit-11 (fluid mixing)		-97.44426546	19.64789310	663188	2173495	2896		22/03/2018 12:50	52.7	1294	7.00	-240	4.56	278
	Los Humeros H-56	2006	-97.45238985	19.65824117	662325	2174632	2840	2380	22/03/2018 13:25	74.1	1196	7.58	-346	5.68	347
	Los Humeros H-49	1640	-97.45575398	19.66414467	661967	2175282	2824	2030	22/03/2018 13:55	68.0	1051	7.70	-270	4.64	283
	Los Humeros H-9		-97.46771954	19.69284192	660683	2178448	2756	2752	22/03/2018 15:05	66.8	752	7.17	-295	4.63	283
	Los Humeros H-32		-97.44843294	19.69107099	662707	2178270	2815	2818	22/03/2018 15:35	67.8	595	6.67	-235	1.55	95
	Los Humeros H-55	≈ 2600	-97.44178982	19.68610194	663409	2177726	2830		22/03/2018 16:08	68.9	254	7.55	-335	0.73	45
	El Tesoro		-97.25200094	19.73436294	683253	2183272	2080		23/03/2018 09:30	22.5	787	7.49	220	6.05	369
	El Tesoro (in front of the first spring)				683259	2183302	2080		23/03/2018 10:00	21.0	610	7.50	240		
	Noria Nuevo Pizarro		-97.45232003	19.49040046	662501	2156054	2342	20.18	23/03/2018 11:45	16.0	2090	8.82	130	11.21	684
	Pozo Hacienda San Miguel Barrientos		-97.57049400	19.50323691	650084	2157367	2352		23/03/2018 12:45	18.5	441	7.81	210		
	Pozo de Pochintoc							95	23/03/2018 13:45	20.2	660	7.80	190		
	Virgen del Carmen		-97.53992885	19.26677171	653514	2131220	2364		23/03/2018 15:46	19.1	2080	7.10	205	12.36	754
	Pozo de Tepeyahualco		-97.46732500	19.51728056	660899	2159015	2426	130	24/03/2018 10:10	23.8	4970	6.75	-50	33.70	2056
	Laguna de Atexcac		-97.45423537	19.33296456	662456	2138625	2363		24/03/2018 14:15	22.0	12640	8.63	50	2.05	125
	Laguna de Alchichica		-97.39758881	19.40821429	668331	2147009	2324		23/03/2018 16:45	18.5	13250	9.07	106	41.75	2547
	Laguna de Quechulac		-97.34922053	19.37386715	673448	2143255	2342		24/03/2018 16:30	20.4	894	8.73	160	6.75	412
Acoculco area	Los Azufres 1		-98.14404722	19.92236110	589656	2203350.946	2840		26/03/2018 15:05	25.4	1489	6.41	-355		
	Los Azufres 2		-98.14442500	19.92255830	589616	2203372.57	2840		26/03/2018 16:00	19.2	693	3.22	-51		
	Los Azufres 3		-98.14504444	19.92286940	589551	2203406.67	2840		28/03/2018 09:45	26.6	1735	7.94	-140		
	Jicolapa		-97.99911898	19.98534263	604784	2210405.375	2230		27/03/2018 09:45	30.7	1372	6.31	-241		
	El Rincon		-98.00717601	19.98889439	603939	2210793.463	2304		27/03/2018 11:00	26.6	550	5.67	110		
	Baños de Quetzalapa		-97.99399722	19.83767500	605418	2194065.117	2171		27/03/2018 16:00	30.0	1964	6.37	135		
	Baños de Chignahuapan		-97.98183170	19.87221460	606669	2197895.496	2190		28/03/2018 07:30	49.0	1448	6.51	-271		

Table 3.3.1.1 - Field data corresponding to the campaign of fluid sampling carried out by BRGM between March22 and 28, 2018, in the Los Humeros and Acoculco geothermal areas.

Collection and conditioning of all the water samples followed the classical procedures recommended for each of the chemical and isotopic analyses to be performed. Thus:

- for the chemical analysis of major anions and some trace elements, such as Cl, SO₄, Br,
 F, NH₄ and PO₄, the water samples were filtered at 0.45 μm and collected in 100 ml polyethylene bottles;
- for the chemical analysis of major cations, the water samples were filtered at 0.45 μ m, then acidified using Suprapur HNO₃ and collected in 100 ml polyethylene bottles;
- in order to avoid silica precipitation, the samples of hot water for silica analysis (high contents) were collected in 50 ml polyethylene bottles and immediately diluted by a factor of 10 using Milli-Q water;
- for the chemical analysis of the other trace elements, such as B, Sr, Li, Ba, Mn, Fe, Al, Cs, Rb, Ge, As, Nd, Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn, as well as for the isotopic Li and Sr analyses, the water samples were filtered at 0.2 μm, then acidified using Suprapur HNO₃ and collected in 50 ml polyethylene bottles;
- for the isotopic analysis of B, the water samples were filtered at 0.45 μ m, then acidified using Suprapur HNO₃ and collected in 1 l polyethylene bottles;
- untreated fluid samples for the isotopic analysis of D and ¹⁸O in the water and of ¹³C in the carbon dioxide were collected in 100 ml and 1 l polyethylene bottles, respectively;

- for the isotopic analysis of ¹⁸O in the dissolved sulphate, cadmium acetate was added to the water samples collected in 1 l polyethylene bottles.

3.3.2 Analytical results

All the chemical analyses for both major and trace elements in the collected water samples were done in the BRGM laboratories using standard water analysis techniques such as Ion Chromatography, Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), Flame Emission Spectrophotometry, TIC analysis and Colorimetry. The chemical analysis results, for which the analytical precision is better than \pm 5% for the major elements and \pm 10% for the trace elements, are given in tables 3.3.2.1 and 3.3.2.2. Except for Los Azufres 2 water sample (pH = 3.22), the ion balance (I. B.) values (tabl. 3) traduce a good quality of the major specie analyses.

The isotopic analyses of the water samples (δD and $\delta^{18}O$ of the water, $\delta^{18}O$ of the dissolved sulphate, plus the $\delta^7 Li$, $\delta^{11}B$, ${}^{87}Sr/{}^{86}Sr$) were also performed in the BRGM laboratories using Thermo Ionization Mass Spectrometry and Neptune Multi Collector ICP-MS. More details relative to the BRGM analytical procedures are given in Millot *et al.* (2011). The isotopic analysis results are given in table 3.3.2.3.

The absolute uncertainty for the analyses of δD and $\delta^{18}O$ in the water samples was $\pm 0.8\%$ and $\pm 0.1\%$, respectively. The absolute uncertainty for the $\delta^{18}O$ analyses of the dissolved sulphate was $\pm 0.1\%$. The external reproducibility of the δ^7 Li and $\delta^{11}B$ analyses was estimated at around $\pm 0.5\%$ and $\pm 0.3\%$, respectively, and the in-run precision of the 87 Sr/ 86 Sr ratio was generally better than $\pm 10 \times 10^{-6} (2\sigma_m)$.

All the geochemical data obtained during this study have been uploaded and stored in the GEMEX Open Access Database (OADB), as well as the required information.

Area	Sampling point	Date	т	Cond. 25°C	pН	Eh	Na	к	Ca	Mg	Alk.	CI	SO4	NO ₃	SiO ₂	TDS	I.B.
			°C	μS/cm		mV	mg/l	mg/l	mg/l	mg/l	mg/I HCO ₃	mg/l	mg/l	mg/l	mg/l	g/l	%
Los Humeros area	Los Humeros H-39	22/03/2018 12:00	61.9	591	7.14	-260	119	23.8	< 0.5	< 0.5	268	46.5	2.3	< 0.5	745	1.20	0.31
	Los Humeros Unit-11 (fluid mixing)	22/03/2018 12:50	52.7	1294	7.00	-240	270	36.9	2.2	< 0.5	307	98.8	227	< 0.5	733	1.68	2.37
	Los Humeros H-56	22/03/2018 13:25	74.1	1196	7.58	-346	244	38.4	1.0	< 0.5	383	147	63.6	< 0.5	931	1.81	1.31
	Los Humeros H-49	22/03/2018 13:55	68.0	1051	7.70	-270	212	35.8	1.1	< 0.5	305	129	86.1	< 0.5	834	1.60	-0.71
	Los Humeros H-9	22/03/2018 15:05	66.8	752	7.17	-295	146	30.9	< 0.5	< 0.5	283	69.5	39.0	0.8	538	1.11	0.41
	Los Humeros H-32	22/03/2018 15:35	67.8	595	6.67	-235	82.6	12.4	2.6	< 0.5	95	86.1	6.3	< 0.5	567	0.85	-1.68
	Los Humeros H-55	22/03/2018 16:08	68.9	254	7.55	-335	34.4	5.6	< 0.5	< 0.5	51	38.4	13.8	< 0.5	155	0.30	1.51
	El Tesoro	23/03/2018 09:30	22.5	787	7.49	220	84.6	11.0	34.5	30.2	369	63.9	12.0	7.9	78.3	0.69	-0.71
	Noria Nuevo Pizarro	23/03/2018 11:45	16.0	2090	8.82	130	410	46.3	17.4	18.0	684	240	115	43.0	47.9	1.62	1.47
	Virgen del Carmen	23/03/2018 15:46	19.1	2080	7.10	205	85.3	8.2	273	107	755	99.1	557	2.3	91.0	1.98	-1.45
	Pozo de Tepeyahualco	24/03/2018 10:10	23.8	4970	6.75	-50	659	30.9	315	133	2056	775	0.6	< 0.5	91.8	4.06	0.99
	Laguna de Atexcac	24/03/2018 14:15	22.0	12640	8.63	50	2022	92.7	16.6	604	1474	3854	264	5.7	68.7	8.40	1.78
	Laguna de Alchichica	23/03/2018 16:45	18.5	13250	9.07	106	2506	218	6.8	431	2547	3259	1088	< 0.5	4.0	10.06	-3.78
	Laguna de Quechulac	24/03/2018 16:30	20.4	894	8.73	160	82.1	7.7	16.7	62.3	412	90.7	19.5	1.0	14.6	0.71	0.04
Acoculco area	Los Azufres 1	26/03/2018 15:05	25.4	1489	6.41	-355	147	29.3	104	28.7	463	36.0	353	< 0.5	77.4	1.24	-2.87
	Los Azufres 2	26/03/2018 16:00	19.2	693	3.22	-51	12.8	8.2	23.0	6.0	< 10	0.7	225	< 0.5	75.3	0.35	-43.53
	Los Azufres 3	28/03/2018 09:45	26.6	1735	7.94	-140	210	33.7	153	46.5	463	52.0	644	< 0.5	56.1	1.66	-2.37
	Jicolapa	27/03/2018 09:45	30.7	1372	6.31	-241	31.7	15.1	278	13.4	958	7.6	4.3	< 0.5	152	1.46	4.76
	El Rincon	27/03/2018 11:00	26.6	550	5.67	110	12.3	12.0	90.7	5.2	291	2.3	48.4	< 0.5	140	0.60	-0.22
	Baños de Quetzalapa	27/03/2018 16:00	30.0	1964	6.37	135	150	16.8	291	37.4	1436	16.1	0.8	< 0.5	114	2.06	2.47
	Baños de Chignahuapan	28/03/2018 07:30	49.0	1448	6.51	-271	93.0	14.2	191	25.9	756	115	26.5	< 0.5	44.1	1.27	-0.34

 Table 3.3.2.1 - Chemical composition (major species) of the geothermal and thermal waters collected during the campaign carried out by BRGM between March 22 and 28, 2018, in the Los Humeros and Acoculco geothermal areas.

Area	Sampling point	Date	т	NH4	PO ₄	F	в	Br	Sr	Ba	Mn	Li	Rb	Cs	Ge	AI	As	Fe	w	Ag	Cu	Zn	Ni	Pb	Co	Cd	U
			°C	mg/l	mg/l	mg/l	mg/l	µg/I	µg/l	µg/I	µg/l	µg/l	µg/I	µg/l	µg/I	µg/l	µg/I	µg/I	µg/I	µg/I	µg/I	µg/I	µg/I	µg/l	µg/I	µg/I	µg/I
Los Humeros area	a Los Humeros H-39	22/03/2018 12:00	61.9	0.11	0.67	13.4	951	32.0	1.52	0.71	7.05	397	240	305	60.1	4193	42323	38	86.5	< 0.01	< 0.1	1.96	0.35	< 0.05	< 0.05	0.06	< 0.01
	Los Humeros Unit-11 (fluid mixing)	22/03/2018 12:50	52.7	0.15	0.70	20.6	1819	73.7	41.2	5.92	25.9	619	315	330	56.0	3310	21721	90	85.4	0.02	< 0.1	0.32	0.65	< 0.05	< 0.05	< 0.01	< 0.01
	Los Humeros H-56	22/03/2018 13:25	74.1	5.51	0.84	4.2	256	90.9	11.0	1.06	18.7	871	392	705	47.6	2042	8077	110	84.5	< 0.01	0.53	0.42	0.65	0.07	< 0.05	0.01	< 0.01
	Los Humeros H-49	22/03/2018 13:55	68.0	3.59	0.33	4.0	593	94.9	16.2	1.08	8.66	676	259	370	46.3	2362	3838	38	103	< 0.01	0.16	0.46	0.48	< 0.05	< 0.05	< 0.01	< 0.01
	Los Humeros H-9	22/03/2018 15:05	66.8	5.33	1.15	7.0	1459	56.8	2.09	0.64	19.9	1182	178	122	8.0	2430	5E+05	105	22.9	< 0.01	0.77	0.69	0.65	< 0.05	< 0.05	< 0.01	< 0.01
	Los Humeros H-32	22/03/2018 15:35	67.8	0.14	0.15	9.3	1447	< 10	38.6	12.1	22.9	394	99.6	94.8	21.0	1925	54597	58	23.4	< 0.01	0.20	0.39	0.70	< 0.05	< 0.05	0.06	< 0.01
	Los Humeros H-55	22/03/2018 16:08	68.9	10.8	0.16	1.3	43.20	22.8	6.03	1.58	23.1	131	38.3	52.2	7.89	245	3379	22	9.93	0.10	< 0.1	0.47	0.33	< 0.05	< 0.05	0.10	< 0.01
	El Tesoro	23/03/2018 09:30	22.5	< 0.05	0.17	0.4	1.267	153	237	41.6	< 0.1	121	22.1	< 0.5	< 0.5	2.49	2.37	< 20	0.20	< 0.01	< 0.1	0.17	< 0.1	< 0.05	< 0.05	0.01	0.97
	Noria Nuevo Pizarro	23/03/2018 11:45	16.0	< 0.05	14.58	1.5	2.711	568	230	61.1	1.7	421	22.6	< 0.5	< 0.5	2.60	32.8	< 20	1.25	< 0.01	2.58	2.31	2.98	0.08	0.73	0.33	2.62
	Virgen del Carmen	23/03/2018 15:46	19.1	0.51	< 0.05	0.8	1.493	244	2488	91.3	132	108	13.3	< 0.5	< 0.5	1.61	3.05	< 20	< 0.05	< 0.01	0.40	1.45	0.26	< 0.05	< 0.05	0.65	0.03
	Pozo deTepeyahualco	24/03/2018 10:10	23.8	0.27	< 0.05	1.1	19.79	1139	3112	6110	311	1787	49.3	7.39	< 0.5	4.41	137	8118	0.14	0.01	< 0.1	2.24	1.93	< 0.05	0.78	0.28	0.25
	Laguna de San Luis Atexca	24/03/2018 14:15	22.0	0.27	< 0.05	0.5	65.56	5429	105	16.4	13.8	2667	104	21.9	< 0.5	6.50	93.8	< 20	0.32	0.01	0.31	0.22	0.76	0.05	0.07	0.12	0.17
	Laguna de Alchichica	23/03/2018 16:45	18.5	0.49	< 0.05	< 1	39.89	4822	31.9	14.2	5.03	2460	305	1.3	< 0.5	7.49	114	< 20	1.59	0.01	0.18	0.57	0.23	< 0.05	< 0.05	0.98	1.92
	Laguna de Quechulac	24/03/2018 16:30	20.4	0.11	< 0.05	0.5	0.561	158	89.6	21.6	8.22	2.87	7.61	< 0.5	< 0.5	5.06	3.48	< 20	< 0.05	< 0.01	1.33	0.23	< 0.1	< 0.05	< 0.05	0.42	0.92
Acoculco area	Los Azufres 1	26/03/2018 15:05	25.4	14.04	1.13	0.2	253	52.7	1732	39.2	1219	38.6	66.8	2.39	3.99	40.1	135	42	0.45	< 0.01	< 0.1	1.12	0.17	< 0.05	< 0.05	0.02	< 0.01
	Los Azufres 2	26/03/2018 16:00	19.2	< 0.05	< 0.05	0.5	1.444	< 10	133	24.3	1160	6.47	19.3	< 0.5	< 0.5	12762	24.3	8284	< 0.05	< 0.01	0.18	105	5.81	0.18	5.31	0.04	0.01
	Los Azufres 3	28/03/2018 09:45	26.6	7.66	2.39	0.3	354	74.6	2500	114	2258	81.3	71.3	2.14	5.53	69.5	8421	70	1.09	< 0.01	1.01	1.37	2.43	0.09	0.9	0.07	0.08
	Jicolapa	27/03/2018 09:45	30.7	0.81	0.08	0.7	1.915	20.7	1242	311	179	95.3	58.3	5.99	1.07	6.08	1.37	70	< 0.05	< 0.01	0.24	0.78	0.18	< 0.05	< 0.05	1.19	< 0.01
	El Rincon	27/03/2018 11:00	26.6	0.49	< 0.05	0.5	0.124	33.3	424	159	120	13.2	33.8	1.81	< 0.5	6.54	13.3	2854	< 0.05	< 0.01	0.23	3.49	0.23	< 0.05	0.11	0.08	< 0.01
	Baños de Quetzalapa	27/03/2018 16:00	30.0	1.01	< 0.05	0.4	2.240	44.3	1070	726	132	138	31.3	11.9	2.6	1.20	1.25	< 20	< 0.05	< 0.01	0.14	0.23	< 0.1	< 0.05	< 0.05	0.15	< 0.01
	Baños de Chignahuapan	28/03/2018 07:30	49.0	0.57	< 0.05	0.8	3.076	182	691	147	27.2	374	63.9	63.1	0.98	25.8	24.1	311	0.14	< 0.01	0.17	0.89	0.18	< 0.05	< 0.05	0.03	0.05

Table 3.3.2.2 - Chemical composition (minor and trace species) of the geothermal and thermal waters collected during the campaign carried out by BRGM between March 22 and 28, 2018, in the Los Humeros and

Area	Sampling point	Date	т	δD	δ ¹⁸ Ο	$\delta^{18}O_{SO4}$	δ ⁷ Li	δ ¹¹ Β	⁸⁷ Sr/ ⁸⁶ Sr
			°C	‰	‰	‰	‰	‰	
Los Humeros area	Los Humeros H-39	22/03/2018 12:00	61.9	-63.8	-1.2	9.3			
	Los Humeros Unit-11 (fluid mixing)	22/03/2018 12:50	52.7	-45.9	1.5	4.0		-2.50	
	Los Humeros H-56	22/03/2018 13:25	74.1	-61.6	-1.1	1.2	7.2	-2.23	0.704310
	Los Humeros H-49	22/03/2018 13:55	68.0	-58.3	-0.3	0.9		-0.74	
	Los Humeros H-9	22/03/2018 15:05	66.8	-53.1	1.2	3.4			
	Los Humeros H-32	22/03/2018 15:35	67.8	-61.5	-0.9	4.8	2.3	-2.52	0.704283
	Los Humeros H-55	22/03/2018 16:08	68.9	-51.3	0.5	5.2			
	El Tesoro	23/03/2018 09:30	22.5	-79.3	-11.1	3.7			
	Noria Nuevo Pizarro	23/03/2018 11:45	16.0	-38.4	-5.1	4.3			
	Virgen del Carmen	23/03/2018 15:46	19.1	-87.2	-11.9	3.4	12.4		0.707095
	Pozo de Tepeyahualco	24/03/2018 10:10	23.8	-73.7	-9.4		8.9	8.55	0.706862
	Laguna de Atexcac	24/03/2018 14:15	22.0	-23.4	0.0	11.8	10.1	6.49	0.706864
	Laguna de Alchichica	23/03/2018 16:45	18.5	-12.2	1.0	17.7			
	Laguna de Quechulac	24/03/2018 16:30	20.4	-30.0	-1.4				
Acoculco area	Los Azufres 1	26/03/2018 15:05	25.4	-69.5	-8.1	4.7	44.8	-4.42	0.705065
	Los Azufres 2	26/03/2018 16:00	19.2	-62.1	-8.4				0.704778
	Los Azufres 3	28/03/2018 09:45	26.6	-29.8	0.1	5.6		-5.61	0.705045
	Jicolapa	27/03/2018 09:45	30.7	-67.5	-10.0	5.3	4.9	-6.79	0.707262
	El Rincon	27/03/2018 11:00	26.6	-68.3	-10.1		5.1		0.707114
	Baños de Quetzalapa	27/03/2018 16:00	30.0	-64.2	-9.1	6.5	5.5	-1.20	0.706804
	Baños de Chignahuapan	28/03/2018 07:30	49.0	-70.8	-10.1	6.0	4.7	-0.17	0.706272

Table 3.3.2.3 - Isotopic composition of the geothermal and thermal waters collected during the campaign carried out by BRGM between March 22 and 28, 2018, in the Los Humeros and Acoculco geothermal areas.

3.4 Data interpretation and discussion

3.4.1 Los Humeros high-temperature geothermal waters

a) Chemical characteristics of the fluids

The geothermal Na-HCO₃-Cl waters discharged from Los Humeros wells (fig. 3.4.1.1), completely deleted in calcium and magnesium, enriched in silica (fig. 3.4.1.2) and boron (among the highest ones in the world), with TDS and pH values ranging from 0.3 to 1.8 g/l and 6.67 to 7.58, respectively, traduce a high interaction process with the reservoir rocks, at high temperature.

Figure 3.4.1.1 - Position of the geothermal and thermal waters collected in the Los Humeros and Acoculco areas in the Cl-HCO₃-SO₄ ternary diagram of Giggenbach (1988).

*Figure 3.4.1.2 - Diagram SiO*₂ - *Cl for the geothermal and thermal waters collected in the Los Humeros and Acoculco areas.*

b) Water origin

The isotopic δD and $\delta^{18}O$ values for the Los Humeros wells show a wide dispersion probably related to boiling, mixing, phase separation and condensation phenomema (fig. 3.4.1.3). The high values of $\delta^{18}O_{H2O}$ of the geothermal waters towards the right of the Global Meteoric Water Line (GMWL) are not only in concordance with high-temperature values, but also suggest a low water-rock ratio of the geothermal reservoir, when compared with the lower values observed in the Krafla geothermal field, in North-Iceland (tabl. 3.4.1.1), where the fluids are also biphasic, but the water-rock ratio is much higher. This is in agreement with a reservoir consisting of medium- to low-permeability pre-caldera andesites.

Figure 3.4.1.3 - Diagram δD - $\delta^{18}O$ for the geothermal and thermal waters collected in the Los Humeros and Acoculco areas.

According to Arrellano *et al.* (2003) and Barragán *et al.* (2010), the isotopic composition of the water molecule would be dominated by two main processes.

The first process would be a mixing of recharge meteoric water with a deep fluid-type andesitic water ($\delta D \approx -20\%$ and $\delta^{18}O \approx 6\%$), as defined by Giggenbach (1992), leading to a positive correlation between δD and $\delta^{18}O$, with a slope close to 3.0. In this case, from the literature existing data, the intersection of the mixture line with the GMWL would result to vary from - 14.5‰ to -11‰ for $\delta^{18}O$, and from -105‰ to -78.5‰ for δD (Portugal *et al.*, 2002; López-Romero, 2006; Barragán Reyes *et al.*, 2010; Bernard *et al.*, 2011). These values are lower than those measured for the meteoric waters in Los Humeros area (Oriental Basin), which are generally close to -10.7‰ for $\delta^{18}O$ and -77.3‰ for δD (Quijano *et al.*, 1981). From these values, the proportion of andesitic water was estimated to be between 25% and 50% (Portugal *et al.*, 2002; Barragán Reyes *et al.*, 2010; Bernard *et al.*, 2011).

The second process would be boiling and phase separation. At fluid temperatures higher than 220°C, ¹⁸O is preferentially partitioned into the fluid phase, while deuterium is slightly partitioned into the vapor phase. The resulting fractionation scatters the points a few per mil perpendicular to the main mixing trend in the corresponding $\delta D - \delta^{18}O$ diagram.

According to data from Verma *et al.* (1998), Arellano *et al.* (2003), Tello (2005) and Bernard (2008), the total geothermal fluid (steam + water) from Los Humeros is characterized by average values of $\delta D \approx -62\%$ and $\delta^{18}O \approx -3\%$.

Another assumption for the origin of the geothermal waters could be the contribution of meteoric water with a δD value similar to that of the geothermal fluid, affected by a strong water-rock interaction process at high-temperature and low water-rock ratio, which enriches its ¹⁸O content (up to 7-8‰). The wide dispersion observed for the isotopic values in the $\delta D - \delta^{18}O$ diagram could be explained by different water-rock interaction factors and processes such as kinetic fractionation at temperatures close to boiling temperatures (Giggenbach and Stewart, 1982), with characteristic slopes of 3.0-3.5, and phase separation. In this case, the isotopic values for the meteoric water would be slightly heavier than those reported by Quijano *et al.* (1981) for the Los Humeros area, but they coincide with hydrologic studies that identify the main recharge to Los Humeros area from the Sierra Madre Oriental, with groundwater flow in a NE-SW direction (Prol-Ledesma, 1998). According to Cedillo Rodríguez (2000), recharge might also occur locally, from rainfall infiltrating the reservoir through its fault and fracture systems.

In this study, the data obtained for the water isotopic values are in the range of the previous data and it is difficult to give a preference about the different assumptions. According to the first assumption, the δD and $\delta^{18}O$ values for the meteoric water were estimated to be close to -110‰ and -15‰, respectively (fig. 3.4.1.3). For the second assumption, these values would be rather close to -65‰ and -9.5‰, respectively (fig. 3.4.1.3). Other arguments and more information about the water recharge and origin of the Los Humeros geothermal waters would have to be probably proposed in the works carried out by other teams like CNR, within the framework of the task 4.3 of this project.

The Los Humeros geothermal waters are also characterized by high Cl/Br ratios with respect to the thermal waters (fig. 3.4.1.4), much higher than that of seawater, which could be partially explained by supply of Cl from the degassing magma chamber.

Figure 3.4.1.4 - Diagram Cl/Br - Cl for the geothermal and thermal waters collected in the Los Humeros and Acoculco areas.

c) Processes of water-rock-gas interaction

The high boron concentrations of these geothermal waters (from 43 to 1819 mg/l; fig. 3.4.1.5) and their δ^{11} B values (-2.52 to -0.74‰; fig. 3.4.1.6) are close to those previously determined by Bernard *et al.* (2011), which range from 214 to 932 mg/l and from -1.7 to 0.3‰, respectively, and by Tello (2005) and Arellano *et al.* (2005), which vary from 118 to 3168 mg/l.

Figure 3.4.1.5 - Diagram B - Cl for the geothermal and thermal waters collected in the Los Humeros and Acoculco areas.

Figure 3.4.1.6 - Diagram $\delta^{11}B$ - B for the geothermal and thermal waters collected in the Los Humeros and Acoculco areas.

High B concentrations as those observed for these geothermal waters are rare in the world (fig. 3.4.1.7). Natural hydrothermal solutions have generally B concentrations from 1 to 10 mg/l in high-temperature two-phase fluids from basaltic aquifers of Iceland such as Krafla, Nesjavellir, etc. (Arnórsson and Andrésdóttir, 1995; Aggarwal *et al.*, 2000; HITI-FP6 project, 2014).

B concentrations higher than 100 mg/l were only observed in fluids from aquifers composed of sedimentary and metamorphic rocks (Larderello, Italy; The Geysers, California; Ngahwa, New Zealand), of dacite-rhyolite volcanic rocks (Los Azufres, Mexico), and of marine carbonate and magmatic rocks, in the Yunnan-Tibet geothermal belt, in China.

Figure 3.4.1.7 - Diagram $\delta^{11}B$ - B for worldwide geothermal waters (after Lü et al., 2014).

In contrast, similar δ^{11} B isotopic values (from -3.7 to -1.5‰) were observed in the hightemperature basaltic waters from Icelandic geothermal fields (Krafla, Nesjavellir, etc.; Aggarwal *et al.*, 2000; FP6-HITI project, 2010; tabl. 3.4.1.1) as well as in the Ngahwa (Aggarwal *et al.*, 2003) and Lardarello (Pennisi *et al.*, 2001) geothermal fields. These values are lower for the Yunnan-Tibet thermal waters (-6.0 to -6.8‰; Lü *et al.*, 2014). Tonarini *et al.* (1998) suggest that δ^{11} B of exsolved fluids during tourmaline crystallization from pegmatites of the Elba Island could vary between -6 and -2‰ at temperatures ranging from 300 to 600°C. As a matter of fact, the δ^{11} B data related to the Tuscan magmatic Province show negligible variations. The restricted range in δ^{11} B values compared to the total concentration variations suggest that the B isotope ratios reflect differences in the δ^{11} B values of the rock rather than the results of secondary processes, such as phase separation or deposition of secondary minerals (Aggarwal *et al.*, 2000).

According to Arnórsson and Andrésdóttir (1995), the variable B and Cl concentrations and Cl/B ratios in high-temperature geothermal waters, as well as high B concentrations can be attributed to a combination of several processes. They include: i) supply of these elements from the degassing magma chamber, ii) supply from the rock with which the water interacts, and iii) phase separation in producing aquifers of wells.

Aggarwal *et al.* (2003) suggested a main source of B in Ngawha to be the greywacke wall rocks and the reason for such high B concentrations (up to 1000 mg/l) to be a lower water/rock ratio deduced from the high O isotope shift (+11‰) of deep water relative to the local meteoric water. Leeman *et al.* (2005) reported up to 240 mg/l in condensates of 300°C volcanic vapors from Vulcano, in Italy. They interpreted these values as the result of mixing of a magmatic endmember with about 70 mg/l of B and vapor derived from boiling of a modified seawater hot brine that was in contact with B-enriched Vulcano rhyolites and trachytes at low fluid/rock ratio.

The observed high B content and variable Cl concentrations in the Los Humeros geothermal waters could be the result of mixing of magmatic fluid from a deep magmatic chamber, the heat and fluid source for the system, leaching of wall rocks of the deep aquifer at a low fluid/rock ratio and phase separation process. Bernard *et al.* (2011) proposed a model based on the existence of deep acid brine to explain the B and Cl behavior in the geothermal fluids of the Los Humeros geothermal field.

		Los Humeros field,	Mexico (thi	s study)		Nesjavellii	r and Krafla	a fields, Icel	and (FP6-H	IITI project;	; Sanjuan e	t al., 2014)		
Well		Unit-11 (fluid mixing)	H-39	H-49	H-56	NJ-16	NJ-10	NJ-14	NJ-16	NJ-19	KS-01	K-05	K-27	K-37
Parameters	Unit	22/03/2018	22/03/2018	22/03/2018	22/03/2018	11/06/2008	11/06/2008	11/06/2008	11/06/2008	11/06/2008	13/06/2008	13/06/2008	13/06/2008	12/06/2008
Cond. 25°C	µS/cm	1294	591	1051	1196	860	872	965	860	783	930	820	1087	
pН		7.00	7.14	7.70	7.58	8.42	9.03	8.79	8.42	8.11	9.36	9.21	8.72	
Eh	mV	-240	-260	-270	-346	-103	-31	-341	-103	-44	-305	-239	-284	
Na	mg/l	270	119	212	244	145	157	161	145	126	175	180	206	268
к	mg/l	36.9	23.8	35.8	38.4	29.0	33.4	32.8	29.0	31.4	36.4	17.8	32.1	48.8
Ca	mg/l	2.2	< 0.5	1.1	1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.34	8.83	3.13	1.46
Mg	mg/l	< 0.5	< 0.5	< 0.5	< 0.5	11.7	< 0.5	< 0.5	11.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Alk.	mg/I HCO ₃	307	268	305	383	296	257	159	296	128	400	162	237	
CI	mg/l	98.8	46.5	129	147	69.7	129	193	69.7	162	76.1	45.0	39.2	64.7
SO4	mg/l	227	2.3	86.1	63.6	90.5	81.6	44.0	90.5	35.9	40.6	248	296	130
SiO ₂	mg/l	733	745	834	931	697	752	718	697	797	1001	361	538	1333
TDS	g/I	1.68	1.20	1.60	1.81	1.34	1.41	1.31	1.34	1.28	1.73	1.02	1.35	1.85
F	mg/l	20.6	13.4	4.0	4.2	1.25	1.57	1.11	1.25	1.13	1.68	0.89	0.98	2.72
в	mg/l	1819	951	593	256	1.82	1.52	1.76	1.82	3.77	2.68	0.54	0.56	2.38
Br	µg/I	73.7	32.0	94.9	90.9	200	500	700	200	600	200	< 500	< 500	< 500
Sr	µg/I	41.2	1.52	16.2	11.0	3.0	2.5	2.3	3.0	2.0	2.1	29.3	15.5	14.1
Ba	µg/I	5.92	0.71	1.08	1.06	2.5	1.0	0.8	2.5	1.0	0.1	1.5	5.2	3.0
Mn	µg/I	25.9	7.05	8.66	18.7	0.6	1.0	0.6	0.6	0.5		0.9	1.0	23.8
Li	µg/I	619	397	676	871	157	290	287	157	263	254	119	186	745
Rb	µg/I	315	240	259	392	96	140	198	96	108	209	138	167	273
Cs	µg/I	330	305	370	705	2.4	6.5	7.5	2.4	4.2	6.7	3.7	5.9	12.1
Ge	µg/I	56.0	60.1	46.3	47.6	59.8	60.6	39.6	59.8	42.7	39	34.6	34.2	49.0
As	µg/I	21721	42323	3838	8077	8.5	5.6	9.7	8.5	22	384	2.1	2.8	202
Zn	µg/I	0.32	1.96	0.46	0.42	1.1	0.6	0.8	1.1	1.1	0.6			4.2
Ni	µg/l	0.65	0.35	0.48	0.65	0.30	0.30	0.20	0.30	0.40	0.10	0.30	0.20	0.70
B/CI	molal ratio	60	67	15	6	0.09	0.04	0.03	0.09	0.08	0.12	0.04	0.05	0.12
Na/K	molal ratio	12.5	8.5	10.1	10.8	8.5	8.0	8.4	8.5	6.8	8.2	17.2	10.9	9.3
Na/Li	molal ratio	132	90	95	84	279	163	170	279	145	208	458	334	108
Na/Rb	molal ratio	3190	1836	3047	2310	5620	4156	3029	5620	4343	3120	4860	4580	3647
Na/Cs	molal ratio	4735	2246	3317	1998	349560	139190	124346	349560	173665	151343	281880	201592	127947
K/Sr	molal ratio	2007	35086	4952	7822	21635	29940	31969	21635	35129	38842	1363	4642	7752
δD	‰	-45.9	-63.8	-58.3	-61.6	-71.1	-73.1	-69.9	-71.1	-68.3	-102.2		-79.9	-58.9
δ ¹⁸ Ο	‰	1.5	-1.2	-0.3	-1.1	-5.4	-5.7	-5.8	-5.4	-3.9	-6.3		-10.5	-7.3
$\delta^{18}O_{SO4}$	‰	4.0	9.3	0.9	1.2	-0.1	3.6		-0.1				-6.2	-5.9
δ ⁷ Li	‰				7.2	8.1	7.8	8.0	8.1	6.8	6.8	8.1	6.5	7.1
δ ¹¹ Β	‰	-2.50		-0.74	-2.23	-2.68	-2.19	-3.37	-2.68	-2.84	-5.45		-3.98	
⁸⁷ Sr/ ⁸⁶ Sr					0.704310	0.7036201	0.7034461	0.7035571	0.7036201	0.7035351	0.7034731	0.7032241	0.7032021	

Table 3.4.1.1 - Comparison of water chemical and isotopic data obtained in three high-temperature ($\geq 290^{\circ}C$)geothermal fields: Los Humeros in Mexico, and Krafla and Nesjavellir in North-Iceland.

The low Sr concentrations and the ⁸⁷Sr/⁸⁶Sr ratios of these geothermal waters, ranging from 1.52 to 41.2 μ g/l (fig. 3.4.1.8) and 0.704283 to 0.704310 (fig. 3.4.1.9), respectively, suggest these waters are in contact with andesite rocks in the reservoir, which is in good agreement with the well observations (Arellano *et al.*, 2003). Lower Sr isotopic values between 0.7032 and 0.7036 (FP6-HITI project, 2010) are observed for the high-temperature geothermal fluids from North-Iceland (Krafla, Nesjavellir, etc.) in contact with basalts in the reservoir (tabl. 3.4.1.1). The high Li concentrations and the δ^7 Li values of the Los Humeros geothermal waters, varying between 131 and 1182 mg/l, and between 2.3 ant 7‰ (tabl. 3.3.2.2 et 3.3.2.3), respectively, confirm that these waters interacts with volcanic rocks at high-temperature geothermal waters from the North-Iceland basaltic reservoirs (from 119 to 745 μ g/l), the isotopic values are close (from 6.5 to 8.1‰; FP6-HITI project, 2014; tabl. 3.4.1.1). Note that the Cs concentrations analysed in the Los Humeros geothermal waters (from 52 to 705 μ g/l) are much higher than those observed in the North-Iceland seatic reservoirs (from 52 to 705 μ g/l) are much higher than those observed in the North-Iceland basaltic reservoirs (from 52 to 705 μ g/l) are much higher than those observed in the Ro rocentrations analysed in the North-Icelandic geothermal waters (from 2 to 12 μ g/l) whereas the Rb concentrations are close (FP6-HITI project, 2010; tabl. 3.4.1.1).

Figure 3.4.1.8 - Diagram Sr - Ca for the geothermal and thermal waters collected in the Los Humeros and Acoculco areas.

*Figure 3.4.1.9 - Diagram*⁸⁷Sr/⁸⁶Sr - Ca/Sr for the geothermal and thermal waters collected in the Los Humeros and Acoculco areas.

d) Geothermometry

The Na-K-Mg ternary diagram from Giggenbach (1988) and the main classical geothermometers such as Silica-quartz, Na-K, Na-K-Ca and K-Ca, as well as the isotopic $\delta^{18}O_{H2O-SO4}$ geothermometric relationships established by Kusakabe and Robinson (1977) and Zeebe (2010), indicate that the full chemical equilibrium is reached for most of these waters at

about 290 ± 30°C (fig. 3.4.1.10; tabl. 3.4.1.2 and 3.4.1.3). For the H-55 well, which has a very low fraction of liquid water, the temperature estimated using Silica-quartz is underestimated (163°C) because the concentration of dissolved silica is decreased by probable dilution of steam condensate. For the H-32, H-39 and H-55 water samples, the isotopic $\delta^{18}O_{H2O-SO4}$ geothermometer also gives underestimated temperature values (112 to 228°C), indicating that the isotope equilibrium conditions are not attained for these samples.

This temperature range is concordant with the presence of an upper liquid-dominated reservoir area, located in augite andesites, between 1025 and 1600 m a.s.l., with neutral pH at 290-330°C, suggested in numerous studies (Arellano *et al.*, 2003; Gutiérrez-Negrín and Izquierdo-Montalvo, 2010). The other deeper, two-phase, low-liquid saturation reservoir area, with high fractions of steam, is located in basalts and hornblende andesites, between 800 and 100 m a.s.l., with low pH fluids at temperatures of between 300 and 400°C.

Figure 3.4.1.10 - Position of the geothermal and thermal waters collected in the Los Humeros and Acoculco areas in the Na-K-Mg ternary diagram of Giggenbach (1988).

Area	Sampling point	Date	Tmeasured	T _{Qz}	T _{Chalced.}	T _{Na-K (1)}	T _{Na-K (2)}	T _{Na-K (3)}	T _{Na-K-Ca} (B=1/3)	T _{Na-K-Ca} (B=4/3)	T _{Na-K-Ca-Mg}	T _{K-Ma (1)}	T _{K-Ma (2)}	T _{Ca-K (1)}	T _{Ca-K (2}
			°C	°C	°C	°C	°C	°C	°C	°C	°C	°C	°C	°C	°C
Los Humeros area	Los Humeros H-39	22/03/2018 12:00	61.9	292	297	284	284	294							
	Los Humeros Unit-11 (fluid mixing)	22/03/2018 12:50	52.7	304	312	233	245	258	231	264				334	256
	Los Humeros H-56	22/03/2018 13:25	74.1	317	329	251	258	271	247	307				386	293
	Los Humeros H-49	22/03/2018 13:55	68.0	320	334	260	266	278	248	292				371	282
	Los Humeros H-9	22/03/2018 15:05	66.8	263	259	293	290	300							
	Los Humeros H-32	22/03/2018 15:35	67.8	265	261	244	254	267	210	165				228	176
	Los Humeros H-55	22/03/2018 16:08	68.9	163	139	255	262	274							
	El Tesoro (existing data)	17/11/2016	23.0	114	83	221	235	250	172	80	13	54	23	131	99
	El Tesoro	23/03/2018 09:30	22.5	124	95	227	240	254	177	88	11	56	26	141	107
	Nuevo Pizarro well (existing data)	09/11/2016	17.0	97	65	189	210	226	182	142	24	80	56	194	150
	Noria Nuevo Pizarro	23/03/2018 11:45	16.0	100	68	210	227	242	206	196	30	97	77	257	198
	Virgen del Carmen	23/03/2018 15:46	19.1	132	104	193	213	229	145	39	34	37	4	83	59
	Pozo deTepeyahualco	24/03/2018 10:10	23.8	133	104	129	159	178	142	97	33	62	34	137	104
Acoculco area	Los Azufres (existing data)	21-25/04/2006	21.4	84	51	334	320	327	207	83	85	74	48	144	110
	Los Azufres (existing data)	25/06/1986	25.0	81	48	305	299	308	207	101	58	78	53	163	125
	Los Azufres (existing data)	25/06/1986	25.0	70	36	207	224	240	177	106	36	72	56	158	121
	Los Azufres 1	26/03/2018 15:05	25.4	124	94	284	283	294	201	103	62	79	54	164	125
	Los Azufres 3	28/03/2018 09:45	26.6	107	76	253	260	273	192	104	53	77	51	161	123
	Jicolapa (existing data)	03/07/1986	32.0	116	86	462	407	403	218	50	149	70	43	112	83
	Jicolapa	27/03/2018 09:45	30.7	162	137	452	400	397	213	46	172	72	46	107	79
	El rincon (existing data)	19/06/1986	32.0	114	84	702	545	521	250	45	170	72	45	114	85
	El Rincon	27/03/2018 11:00	26.6	157	132	691	540	516	253	51	189	78	53	121	91
	Baños de Quetzalapa (existing data)	18/06/1986	32.0	105	74	216	231	246	168	74	59	62	33	124	93
	Baños de Quetzalapa	27/03/2018 16:00	30.0	145	118	209	226	241	161	62	97	63	34	110	82
	Baños de Chignahuapan (existing data)	02/07/1986	49.0	71	37	245	254	267	173	64	80	62	33	115	86
	Baños de Chignahuapan	28/03/2018 07:30	49.0	96	64	247	255	268	172	61	96	63	35	112	83
	Agua salada (existing data)	03/07/1986	21.0	128	99	254	261	274	213	165	51	99	81	230	178
	Capulines (existing data)	01/07/1986	20.0	105	73	310	303	312	202	86	9	57	38	146	111

 $\begin{array}{l} T_{OL}: \mbox{ Fournier (1977); } T_{Datcost}: \mbox{ Mchard (1979)} \\ T_{VacK, ft}: \mbox{ Mchard (1979); } T_{VacK, OL}: \mbox{ Fournier (1979); } T_{VacK, OL}: \mbox{ Giggenbach (1988)}. \\ T_{VacK, OL}: \mbox{ Fournier and Truesdell (1973)}. \end{array}$

Mo: Fournier and Potter (1979)

{cMa(1)}: Giggenbach (1988); Τ{K-Ma(2)}: Michard (1990). _{a-K (1)}: Fournier and Truesdell (1973); Τ_{Ca-K (2)}: Michard (1990)

Table 3.4.1.2 - Classical chemical geothermometers applied on waters from the Los Humeros and Los Azufres geothermal areas.

Recommended value

Area	Sampling point	Date	Т ¹⁸ О _{Н20-SO4 (1)} °С	Т ¹⁸ О _{Н2О-SO4 (2)} °С	Т ¹⁸ О _{н20-S04 (3)} °С	Т ¹⁸ О _{н20-SO4 (4)} °С	Т ¹⁸ О _{н20-ВаЅО4} °С	Т ¹⁸ О _{Н2О-СаSO4 (1)} °С	Т ¹⁸ О _{Н20-СаSO4 (2)} °С
Los Humeros area	Los Humeros H-39	22/03/2018 12:00	176	171	112	113	138	186	194
	Los Humeros Unité 11 (fluid mixing)	22/03/2018 12:50	360	387	267	246	281	394	405
	Los Humeros H-56	22/03/2018 13:25	368	398	273	251	287	403	415
	Los Humeros H-49	22/03/2018 13:55	418	464	315	283	322	463	476
	Los Humeros H-9	22/03/2018 15:05	372	403	277	254	290	408	420
	Los Humeros H-32	22/03/2018 15:35	263	269	185	178	208	282	291
	Los Humeros H-55	22/03/2018 16:08	289	299	207	197	228	311	321
	El Tesoro	23/03/2018 09:30	126	117	69	74	96	132	139
	Noria Nuevo Pizarro	23/03/2018 11:45	192	189	125	126	151	204	212
	Virgen del Carmen	23/03/2018 15:46	121	112	65	70	92	127	134
	Pozo deTepeyahualco	24/03/2018 10:10							
Acoculco area	Los Azufres 1	26/03/2018 15:05	147	140	87	91	114	155	162
	Los Azufres 3	28/03/2018 09:45	268	275	189	182	212	287	297
	Jicolapa	27/03/2018 09:45	121	112	65	70	92	127	134
	El Rincon	27/03/2018 11:00							
	Baños de Quetzalapa	27/03/2018 16:00	118	109	63	68	89	124	131
	Baños de Chignahuapan	28/03/2018 07:30	114	104	59	64	86	120	126

T¹⁸O_{H2OSO4 (1}): Lloyd (1968); T¹⁸O_{H2OSO4 (2}): Mizutani and Rafter (1969); T¹⁸O_{H2OSO4 (3}): Zeebe (2010); T¹⁸O_{H2OSO4 (4}): Zheng (1999). $T^{18}O_{H2O\cdot BaSO4}$: Kusakabe and Robinson (1977).

T¹⁸O_{H2O-CaSO4 (1)}: Chiba et al. (1980); T¹⁸O_{H2O-CaSO4 (2)}: Boschetti et al. (2011).

Among the different Na-Li geothermometric relationships existing in the literature (Michard and Fouillac, 1981; Kharaka et al., 1982; Michard, 1990; Sanjuan et al., 2014; 2016b; 2017), only the Na-Li auxiliary geothermometer defined for North-Icelandic high-temperature geothermal dilute waters (Sanjuan et al., 2014; tabl. 3.4.1.4), give concordant temperature estimations ($320 \pm 30^{\circ}$ C) with those estimated using the classical Silica-quartz, Na-K and Ca-K geothermometers, and the isotopic $\delta^{18}O_{H2O-SO4}$ geothermometer, for most of the Los Humeros geothermal waters (apart H-9 and H-32 waters). The Na-Cs auxiliary geothermometer defined

Table 3.4.1.3 - Classical isotope geothermometers applied on waters from the Los Humeros and Los Azufres geothermal areas.

by Sanjuan *et al.* (2016a, b) also yields concordant temperature values $(300 \pm 30^{\circ}\text{C})$ for all the waters, and to a lesser extent, with lower estimated temperature values, and only for some waters, the Na-Rb, K-Sr and K-W auxiliary geothermometers defined by Sanjuan *et al.* (2016b). These estimations range from 227 to 255°C, 241 to 319°C, and 244 to 248°C, respectively.

Area	Sampling point	Date	T _{Na-Li (1)} °C	T _{Na-Li (2)} °C	т _{Na-Li (3)} °С	T _{Na-Rb (1)} °C	T _{Na-Rb (2)} °C	T _{Na-Cs (1)} °C	T _{Na-Cs (2)}	T _{κ-sr} °C	Т _{к-Fe (1)} °С	Т _{к-Fe (2)} °С	Τ _{κF} °C	т _{кw} °С
Los Humeros area	Los Humeros H-39	22/03/2018 12:00	155	337	78	264	255	174	331	309	164	112	201	215
	Los Humeros Unité 11 (fluid mixing)	22/03/2018 12:50	127	309	67	219	230	151	289	210	164	113	244	244
	Los Humeros H-56	22/03/2018 13:25	160	343	80	245	244	178	339	262	160	109	172	246
	Los Humeros H-49	22/03/2018 13:55	151	334	77	223	232	162	309	241	193	143	167	248
	Los Humeros H-9	22/03/2018 15:05	239	419	108	223	231	140	270	319	148	96	184	191
	Los Humeros H-32	22/03/2018 15:35	185	368	90	222	231	149	286	147	112	60	159	146
	Los Humeros H-55	22/03/2018 16:08	166	348	82	216	227	157	301	154	96	45	76	96
	El Tesoro (existing data)	17/11/2016	72	248	42						_			
	El Tesoro	23/03/2018 09:30	97	276	54	128	172			101	135	83	64	56
	Nuevo Pizarro well (existing data)	09/11/2016	87	265	49									
	Noria Nuevo Pizarro	23/03/2018 11:45	78	255	45	63	124			170	243	195	141	139
	Virgen del Carmen	23/03/2018 15:46	90	268	51	103	155			49	118	67	73	
	Pozo deTepeyahualco	24/03/2018 10:10	139	321	72	74	133	45	116	91	44		118	82
Acoculco area	Los Azufres (existing data)	25/06/1986	41	213	27									
	Los Azufres 1	26/03/2018 15:05	18	184	14	157	192	52	126	100	175	123	71	100
	Los Azufres 3	28/03/2018 09:45	32	202	23	141	181	44	114	98	167	115	84	123
	Jicolapa	27/03/2018 09:45	147	329	75	256	250	102	205	81	118	66	85	
	El Rincon	27/03/2018 11:00	80	258	47	293	270	96	195	92	30		71	
	Baños de Quetzalapa (existing data)	18/06/1986	74	250	43						80	29		
	Baños de Quetzalapa	27/03/2018 16:00	72	248	43	117	164	82	174	88	162	110	74	
	Baños de Chignahuapan (existing data)	02/07/1986	168	350	83									
	Baños de Chignahuapan	28/03/2018 07:30	170	353	84	182	207	134	259	90	78	27	87	58
	Agua salada (existing data)	03/07/1986	43	214	28						140			
	Capulines (existing data)	01/07/1986	106	287	58									
Turner: Fouillac and Mic	hard (1981): The unit Saniuan et al. (2014): The unit Sa	niuan et al. (2017).			Recomme	anded value								

$$\begin{split} T_{Ns \perp (1)}; & \text{Foullac and Michard} (1981); \\ T_{Ns \perp (2)}; & \text{Sanjuan et al.} (2014); \\ T_{Ns R h (1)}, \\ T_{Ns$$

 $T_{Na,Rb}(2)$, $T_{Na,Cs}(2)$, T_{K-Sr} , $T_{K-Fe}(2)$: Sanjuan *et al.* (2016a, b)

Table 3.4.1.4 - Auxiliary chemical geothermometers applied on watersfrom the Los Humeros and Los Azufres geothermal areas.

Thermodynamic binary diagrams representating log (H₄SiO₄) as a function of log (Na/K), log (Ca/K²), log (Mg/K²), log (Na/Li), log (Na/Cs), log (Na/Rb) and log (K²/Sr) were constructed in order to illustrate these results (figs. 3.4.1.11 and 3.1.4.12).

In the log (H₄SiO₄) - log (Na/K) diagram (fig. 3.4.1.11), the equilibrium reaction (equation 1) at different temperatures was determined using the thermometric relationships given by Fournier (1977) for Silica-quartz and by Giggenbach (1988) for Na-K; the other equilibrium reaction (equation 2) at different temperatures was defined using the thermometric relationships given by Fournier (1977) for Silica-quartz and by Michard (1979) for Na-K.

In the log (H₄SiO₄) - log (Ca/K²) diagram (fig. 3.4.1.11), the equilibrium reaction (equation 1) at different temperatures was determined using the thermometric relationships given by Fournier (1977) for Silica-quartz and by Michard (1990) for Ca-K; the equilibrium reaction (equation 2) at different temperatures was defined using the thermometric relationships given by Michard (1979) for Silica-chalcedony and by Michard (1990) for Ca-K.

In the log (H₄SiO₄) - log (Mg/K²) diagram (fig. 3.4.1.11), the equilibrium reaction (equation 1) at different temperatures was determined using the thermometric relationships given by Michard (1979) for Silica-chalcedony and by Giggenbach (1988) for K-Mg; the equilibrium reaction (equation 2) at different temperatures was defined using the thermometric relationships given by Michard (1979) for Silica-chalcedony and by Michard (1990) for K-Mg.

Figure 3.4.1.11 - Diagrams log (H_4SiO_4) as a function of log (Na/K), log (Ca/K^2) and log (Mg/K^2) for the geothermal and thermal waters collected in the Los Humeros and Acoculco areas (all the concentrations are given in mol/l).

In the log (H₄SiO₄) - log (Na/Li) diagram (fig. 3.4.1.12), the equilibrium reaction (equation 1) at different temperatures was determined using the thermometric relationships given by

Fournier (1977) for Silica-quartz and by Sanjuan *et al.* (2014) for Na-Li; the equilibrium reaction (equation 2) at different temperatures was defined using the thermometric relationships given by Michard (1979) for Silica-chacedony and by Fouillac and Michard (1981) for Na-Li.

In the log (H₄SiO₄) - log (Na/Cs) diagram (fig. 3.4.1.12), the equilibrium reaction (equation 1) at different temperatures was determined using the thermometric relationships given by Fournier (1977) for Silica-quartz and by Sanjuan *et al.* (2016a, b) for Na-Cs; the equilibrium reaction (equation 2) at different temperatures was defined using the thermometric relationships given by Michard (1979) for Silica-chalcedony and by Michard (1990) for Na-Cs.

In the log (H₄SiO₄) - log (Na/Rb) diagram (fig. 3.1.4.12), the equilibrium reaction (equation 1) at different temperatures was determined using the thermometric relationships given by Fournier (1977) for Silica-quartz and by Sanjuan *et al.* (2016a, b) for Na-Cs; the equilibrium reaction (equation 2) at different temperatures was defined using the thermometric relationships given by Fournier (1977) for Silica-chacedony and by Michard (1990) for Na-Cs.

In the log (H₄SiO₄) - log (K²/Sr) diagram (fig. 3.1.4.12), the equilibrium reaction (equation 1) at different temperatures was determined using the thermometric relationships given by Fournier (1977) for Silica-quartz and by Sanjuan *et al.* (2016a, b) for K-Sr; the other equilibrium reaction (equation 2) at different temperatures was defined using the thermometric relationships given by Fournier (1977) for Silica-chalcedony and by Michard (1990) for K-Sr.

Figure 3.1.4.12 - Diagrams log (H₄SiO₄) as a function of log (Na/Li), log (Na/Cs), log(Na/Rb) and log (K²/Sr) for the geothermal and thermal waters collected in the Los Humeros and Acoculco areas (all the concentrations are given in mol/l).

Other thermodynamic binary diagrams such as log (Na/Cs), log (Na/Rb), and log (K^2/Sr), as a function of log (Na/Li) may also illustrate these results (fig. 3.4.1.13).

In the log (Na/Cs) - log (Na/Li) diagram (fig. 3.4.1.13), the equilibrium reaction (equation 1) at different temperatures was determined using the thermometric relationships given by Sanjuan *et al.* (2014) for Na-Li and Sanjuan *et al.* (2016a, b) for Na-Cs; the other equilibrium reaction

(equation 2) at different temperatures was defined using the thermometric relationships given by Fouillac and Michard (1981) for Na-Li and by Michard (1990) for Na-Cs.

In the log (Na/Rb) - log (Na/Li) diagram (fig. 3.4.1.13), the equilibrium reaction (equation 1) at different temperatures was determined using the thermometric relationships given by Sanjuan *et al.* (2014) for Na-Li and Sanjuan *et al.* (2016a, b) for Na-Rb; the other equilibrium reaction (equation 2) at different temperatures was defined using the thermometric relationships given by Fouillac and Michard (1981) for Na-Li and by Michard (1990) for Na-Rb.

In the log (K^2/Sr) - log Na/Li) diagram (fig. 3.4.1.13), the equilibrium reaction (equation 1) at different temperatures was determined using the thermometric relationships given by Sanjuan *et al.* (2014) for Na-Li and by Sanjuan *et al.* (2016a, b) for K-Sr; the equilibrium reaction (equation 2) at different temperatures was defined using the thermometric relationships given by Fouillac and Michard (1981) for Na-Li and by Sanjuan *et al.* (2016a, b) for K-Sr.

The geothermometric relationships used in this study are as follows (T in K):

Silica-quartz (Fournier, 1977):	$T = 1309 / [0.41 - \log (H_4 SiO_4)]$	
Silica-chalcedony (Michard, 1979):	$T = -1015 / \left[0.125 + \log \left(H_4 SiO_4 \right) \right]$	
Na/K (Giggenbach, 1988):	T = 1390 / [log (Na/K) + 1.52]	
Na/K (Michard, 1979):	T = 908 / [log (Na/K) + 0.70]	
Ca/K (Michard, 1990):	$T = 3030 / [log (Ca/K^2) + 3.94]$	
K/Mg (Giggenbach, 1988):	$T = 4410 / [9.60 - \log (K^2/Mg)]$	
K/Mg (Michard, 1990):	$T = 3000 / [5.84 - \log{(K^2/Mg)}]$	
Na/Li (Sanjuan et al., 2014):	T = 2002 / [log (Na/Li) + 1.322]	
Na/Li (Fouillac & Michard, 1981):	T = 1000 / [log (Na/Li) + 0.38]	(Cl < 0.3 M)
Na/Cs (Sanjuan et al., 2016a, b):	T = 2585 / [log (Na/Li) + 0.923]	
Na/Cs (Michard, 1990):	T = 2610 / [log (Na/Cs) + 2.48]	
Na/Rb (Sanjuan et al., 2016a, b):	T = 2522 / [log (Na/Rb) + 1.514]	
Na/Rb (Michard, 1990):	T = 1400 / [log (Na/Rb) - 0.66]	
K/Sr (Sanjuan <i>et al.</i> , 2016a, b):	$T = 2992 / [6.472 - \log (K^2/Sr)]$	
K/Sr (Michard, 1990):	$T = 2450 / [4.44 - \log (K^2/Sr)]$	

where all the specie concentrations must be expressed in mol/l.

Figure 3.4.1.13 - Diagrams log (Na/Cs), log (Na/Rb), and log (K^2 /Sr) as a function of log (Na/Li) for the geothermal and thermal waters collected in the Los Humeros and Acoculco areas (all the concentrations are given in mol/l).

3.4.2 Los Humeros and Acoculco thermal waters

a) Chemical characteristics of the fluids

The El Tesoro, Noria Nuevo Pizarro, Virgen del Carmen and Pozo de Tepeyahualco waters from the Los Humeros area, sampled during this study, Na-HCO₃-Cl-(SO₄) type (fig. 3.4.1.1), have temperature, TDS and pH values ranging from 16 to 23.8°C, from 0.69 to 4.1 mg/l and from 6.75 to 8.82, respectively. The water samples collected from the Acoculco area (Los Azufres, Jicolapa, El Rincón, Quetzalapa and Chignahuapan), HCO₃-SO₄-Na-Ca and HCO₃-Na-Ca type (fig. 3.4.1.1), have temperature, TDS and pH values varying from 19 to 49°C, from 0.35 to 2.1 g/l and from 3.22 to 7.94, respectively. The Los Azufres 2 water, SO₄-Na-Ca type (fig. 3.4.1.1), which has the lowest values of pH (3.22) and TDS (0.35 g/l), is probably an acidic steam condensate.

The analytical results obtained in this study for the El Tesoro, Noria Nuevo Pizarro, Jicolapa, El Rincón, Quetzalapa and Chignahuapan thermal waters are close to those found in previous studies, when the analyses have been done (Tello Hinojosa, 1986; López-Hernández *et al.*, 2009; Peiffer *et al.*, 2014b; CFE data). For the Los Azufres thermal springs, waters like Los Azufres 3 with relatively high pH (7.94) had never been previously measured.

b) Water origin

Apart the Nuevo Pizarro, Tepeyahualco and Los Azufres waters, all the other waters show composition in δD and $\delta^{18}O$ falling close to GMWL (fig. 3.4.1.3), which indicate a meteoric origin. The position of the Los Azufres 1 and 2 waters, at the right of GMLW suggest an enrichment in ¹⁸O due to water-rock interaction at high-temperature and/or low water-rock ratio. That of Los Azufres 3 water could probably result from a boiling process taking into account its $\delta^{11}B$ value and its Cl content. As for the crater lake waters (lagunas), also positioned at the right of GMLW, the Nuevo Pizarro and Tepeyahualco have probably been affected by a process of water evaporation or by a mixing with an evaporated water. Given their similar values in δD , the Chignahuapan, Jicolapa, El Rincón, Los Azufres 1 thermal waters could have the same recharge area. If we consider the second assumption for the origin of the Los Humeros geothermal waters (mainly meteoric water with high water-rock interactions) and the δD values, this area of water recharge could be also close to that of the Los Humeros geothermal waters. The relatively wide dispersion in δD and $\delta^{18}O$ values observed for the Virgen del Carmen, El Tesoro, and Quetzalapa waters suggest that these waters have different recharge areas, probably located in the Sierra Madre Oriental.

The Cl/Br mass ratios of all these waters are much lower (from 70 to 700) than those of the Los Humeros geothermal waters (from 1200 to 1700; fig. 3.4.1.4). However, the higher Cl/Br

values for the thermal waters are those associated with the Los Azufres 1 and 3, Chignahuapan and Tepeyahualco (600-700). The El Tesoro, Virgen del Carmen, Nuevo Pizarro and Quetchalapa waters indicate similar values of Cl/Br around 400 (fig. 3.4.1.4).

c) Processes of water-rock-gas interaction

Los Azufres 1 and 3 thermal waters have B concentrations (253-354 mg/l) much higher than those analysed in the other thermal waters (from 0.12 to 20 mg/l; fig. 3.4.1.5) and specific δ^{11} B signatures (-5.61 and -4.42‰; fig. 3.4.1.6), which suggest mixing with low proportions of deep geothermal waters enriched in B (probably similar to those from the Los Humeros).

However, the relatively high B concentrations observed in most of the thermal waters and their $\delta^{11}B$ signatures could traduce very small fluxes of deep geothermal waters in these waters, especially for the Chignahuapan thermal water (B \approx 3 mg/l), which has also a high Cl concentration (115 mg/l). López-Hernández *et al.* (2009) already mentioned that the Chignahuapan thermal water, discharged from a spring located in an area of ancient system faults (Tulancingo-Tlaxco) connecting both zones, might be the farthest SE discharge of the Acoculco hydrothermal system, constituted of a mixture of deep geothermal fluid and shallow waters. Water isotopic data do not differ from meteoric values, because important dilution with shallow meteoric water could mask the deep signature.

The high B and Cl concentrations ($\approx 20 \text{ mg/l}$ and 775 mg/l, respectively) for the Tepeyahualco water, and its specific δ^{11} B value (8.55‰), close to that of the Atexcac water (crater lake), suggest that this water is affected by a process of evaporation, like probably the Nuevo Pizarro water.

For most of the thermal waters, the Ca - HCO₃ diagram (fig. 3.4.2.1) shows that these waters interact with calcium carbonates and have high Ca concentrations, compared with the Los Humeros geothermal waters, which are depleted in Ca. Apart the Los Azufres thermal waters, the high Sr concentrations of the other thermal waters, compared with those of the Los Humeros geothermal waters (fig. 3.4.1.8), and their ⁸⁶Sr/⁸⁷Sr ratios, ranging from 0.706272 to 0.707262 (fig. 3.4.1.9), confirm that these waters are interacting with marine carbonate rocks formed during the Mesozoic period (probably the thick series of Jurassic and Cretaceous limestones, mentionned in Carrasco *et al.*, 2017a).

For Los Azufres thermal waters, the Sr concentrations are high (from 133 to 2500 μ g/l), but their ⁸⁶Sr/⁸⁷Sr signature (from 0.704778 to 0.705065; fig. 3.4.1.9) is closer to volcanic rocks (rhyolites?). These values could also traduce a mixing process between a deep water in contact with volcanic rocks and low proportions of water interacting with sedimentary rocks.

Figure 3.4.2.1 - Diagram HCO₃ - Ca for the geothermal and thermal waters collected in the Los Humeros and Acoculco areas.

d) Geothermometry

The Na-K-Mg ternary plot developed by Giggenbach (1988) indicates that all the thermal waters of the Los Humeros and Acoculco areas are immature, having not reached full chemical equilibrium with the host rocks (fig. 3.4.1.10). In addition, geothermometry cannot be applied to acidic waters. However, the Na-K and Na-Li diagrams (fig. 3.4.2.2) show that the Na/K and Na/Li ratios for numerous thermal waters are close to those of the Los Humeros geothermal waters. Associated with δ^7 Li values ranging from 4.7 to 6.5‰ and relatively high B concentrations (especially for the Los Azufres waters), these ratios suggest that very low proportions of deep geothermal waters at about 300°C could be present in these thermal waters.

Figure 3.4.2.2 - Diagrams K - Na, Li - Na, Rb - Na, and Cs - Na for the geothermal and thermal waters collected in the Los Humeros and Acoculco areas.

These Na/K and Na/Li ratios, and to a lesser extent, the Na/Rb and Na/Cs ratios (fig. 3.4.2.2), could be the only witness of the presence of very small fluxes of high-temperature geothermal waters in the thermal waters, because the permeability of these areas is low, these geothermal waters are completely depleted in Ca, Mg and Sr whereas the thermal waters have relatively high concentrations in these elements, and the high silica concentrations of the geothermal waters can significantly decrease due to silica precipitation during their cooling and/or their dilution with shallow waters.

In this case, the geothermometers Na/Li and Na/K, and Na/Rb and Na/Cs sometimes, determined by Sanjuan *et al.* (2014; 2016a,b), give temperature estimations ranging from 248 to 353°C (tabl. 3.4.2.4), close to the temperature values measured in the wells and estimated using thermometric relationships.

In the Acoculco area, not only escapes of deep gases from the geothermal reservoir reach the surface (Peiffer *et al.*, 2014b), but also small fluxes of deep waters coud be able to preserve,

more or less, their original Na/K and Na/Li ratios, resulting from the temperature of their deep reservoir, even after a significant mixing with cold waters, during their ascent up to the surface.

In such a context (low-permeability environment, presence of low-salinity deep waters with very low concentrations of dissolved calcium, magnesium and strontium, precipitation of dissolved silica or dilution by shallow waters during the ascent and cooling of the deep water, dissolution of marine carbonates which provides relatively high concentrations in calcium, magnesium and strontium to the thermal waters), the application of geothermometers to thermal waters in order to estimate the temperature of deep reservoir is very difficult, but the Na/K and Na/Li ratios, and sometimes the Na/Cs and Na/Rb ratios, the boron concentrations and their isotopes, as well as analyses of associated non condensable gases (Peiffer *et al.*, 2014b) may be useful tools for high-temperature geothermal exploration.

Classical geothermometers such as Silica-chalcedony, Na-K-Ca, K-Mg and Ca-K, based on the fluid equilibration with chalcedony, muscovite, clinochlore, K-felspar and calcite, which can re-equilibrate relatively fast, probably indicate subsurface temperature estimations for these thermal waters, ranging from 60 to 100°C (tabl. 3.4.1.2). The $\delta^{18}O_{H2O-SO4}$ geothermometers defined by Kusakabe and Robinson (1977), Zeng (1999) and Zeebe (2010), as well as the K-Sr and K-F auxiliary geothermometers determined by Sanjuan *et al.* (2016) and by Michard (1990), respectively, also seem to indicate concordant temperature estimations, which vary from 60 to 100°C (tabl. 3.4.1.4).

The relatively high concentration of dissolved silica analysed in the Atexcac water (fig. 3.4.1.2) could be explained by a thermal water input throughout the bottom of the Atexcac crater lake, according to Macek *et al.* (1994).

3.5. Main conclusions

The main objectives of this study were to develop and validate auxiliary chemical geothermometers such as Na-Li, Na-Cs, Na-Rb, K-Sr, ... and the $\delta^{18}O_{H2O-SO4}$ isotope geothermometers in order:

- to improve the geochemical methods for geothermal exploration in volcanic fields such as Los Humeros and Acoculco, with high-temperature and relatively low permeability;
- to acquire a better knowledge about the circulation of high-temperature deep fluids and their possible interaction with more superficial waters in this type of geothermal fields, from chemical and isotopic water analyses from surface thermal springs.

In order to attain these objectives, a preliminary exhaustive literature review about the geological setting and the existing geochemical data on the geothermal and termal waters from Acoculco and the Los Humeros areas was carried by BRGM. After this review, fluid samples were collected by BRGM, between March 22 to 28, 2018, in collaboration with CFE, University of Michoacana and CNR Lelli's team, from seven geothermal wells and four thermal springs located in the Los Humeros area, from eight thermal springs located in the Acoculco area, and from three neighbouring crater lakes (lagunas), as references of surface waters. Among the two-phase geothermal waters from Los Humeros field, very rich in steam, those which indicated the most high fractions of liquid water were selected with the valuable help of CFE. The chemical (major and trace species) and isotopic analyses (δD_{H2O} and $\delta^{18}O_{H2O}$, $\delta^{18}O_{SO4}$, $\delta^{11}B$, δ^{7} Li and 87 Sr/ 86 Sr ratios) were performed in the BRGM laboratories, and data interpretation was then carried out.

The geothermal Na-HCO₃-Cl waters discharged from Los Humeros wells, completely deleted in calcium and magnesium, enriched in silica and boron (among the highest ones in the world), with TDS and pH values ranging from 0.3 to 1.8 g/l and 6.67 to 7.58, respectively, traduce a high interaction process with the reservoir rocks, at high-temperature. The high values of $\delta^{18}O_{H2O}$ of these waters towards the right of of the Global Meteoric Water Line (GMWL) are not only in concordance with these high-temperature values, but also suggest a low water-rock ratio of the geothermal reservoir, when compared with the lower values observed in the Krafla geothermal field, in North-Iceland, where the fluids are also biphasic, but the water-rock ratio is much higher. This is in agreement with a reservoir consisting of medium- to low-permeability pre-caldera andesites. The volcanic nature of the reservoir rocks was confirmed by the Sr and Li isotope signatures.

The isotopic δD and $\delta^{18}O$ for the Los Humeros wells show a wide dispersion probably related to boiling, mixing, phase separation and condensation phenomema. Two main assumptions were considered in this study:

- a mixing of recharge meteoric water with a deep fluid-type and sitic water ($\delta D \approx -20\%$ and $\delta^{18}O \approx 6\%$), as defined by Giggenbach (1992), leading to a positive correlation between δD and $\delta^{18}O$, with a slope close to 3.0, and a proportion of andesitic water estimated to be between 25% and 50%, accompanied with processes of boiling and phase separation (Arrellano *et al.*, 2003; Barragán *et al.*, 2010);
- a contribution of meteoric water with a δD value similar to that of the geothermal fluid (average values of $\delta D \approx -62\%$ and $\delta^{18}O \approx -3\%$ for the total geothermal fluid, steam + water, characterized by data from Verma *et al.*, 1998; Arellano *et al.*, 2003; Tello, 2005; and Bernard, 2008), affected by a strong water-rock interaction process at hightemperature and low water-rock ratio, which enriches its ¹⁸O content (up to 7-8‰). The wide dispersion observed for the isotopic values could be explained by different waterrock interaction factors and processes such as kinetic fractionation at temperatures close to boiling temperatures (Giggenbach and Stewart, 1982), with characteristic slopes of 3.0-3.5, and phase separation.

In this study, the data obtained for the water isotopic values are in the range of the previous data and it is difficult to give a preference about the different assumptions. According to the first assumption, the δD and $\delta^{18}O$ values for the meteoric water were estimated to be close to -110‰ and -15‰, respectively. For the second assumption, these values would be rather close to -65‰ and -9.5‰, respectively. In this last case, the isotopic values for the meteoric water would be slightly heavier than those reported by Quijano *et al.* (1981) for the Los Humeros area (Oriental Basin), close to -77.3‰ for δD and -10.7‰ for $\delta^{18}O$, but they would coincide with hydrologic studies that identify the main recharge to Los Humeros area from the Sierra Madre Oriental, with groundwater flow in a NE-SW direction (Prol-Ledesma, 1998).

According to Arnórsson and Andrésdóttir (1995), the variable B and Cl concentrations and Cl/B ratios in high-temperature geothermal waters, as well as high B concentrations can be attributed to a combination of several processes. They include: i) supply of these elements from the degassing magma chamber, ii) supply from the rock with which the water interacts, and iii) phase separation in producing aquifers of wells. The observed high B contents and specific isotopic signatures, as well as the variable Cl concentrations in the Los Humeros geothermal waters, could be the result of mixing of magmatic fluid from a deep magmatic chamber, the heat and fluid source for the system, leaching of wall rocks of the deep aquifer at a low fluid/rock ratio and phase separation process.

The Na-K-Mg ternary diagram from Giggenbach (1988) and the main classical geothermometers such as Silica-quartz, Na-K, Na-K-Ca and K-Ca, as well as the isotopic $\delta^{18}O_{H2O-SO4}$ geothermometric relationships established by Kusakabe and Robinson (1977) and Zeebe (2010), indicate that the full chemical equilibrium is reached for most of these waters at

about $290 \pm 30^{\circ}$ C. This temperature range is concordant with the presence of an upper liquiddominated reservoir area, located in augite andesites, between 1025 and 1600 m a.s.l., with neutral pH at 290-330°C, suggested in numerous studies (Arellano *et al.*, 2003; Gutiérrez-Negrín and Izquierdo-Montalvo, 2010).

Among the different Na-Li geothermometric relationships existing in the literature (Michard and Fouillac, 1981; Kharaka *et al.*, 1982; Michard, 1990; Sanjuan *et al.*, 2014; 2017), only the Na-Li auxiliary geothermometer defined for North-Icelandic high-temperature geothermal dilute waters (Sanjuan *et al.*, 2014), give concordant temperature values ($320 \pm 30^{\circ}$ C) with those estimated using the classical Silica-quartz, Na-K and Ca-K geothermometers, and the isotopic $\delta^{18}O_{H2O-SO4}$ geothermometer, for most of the Los Humeros geothermal waters (apart H-9 and H-32 waters). The Na-Cs auxiliary geothermometer defined by Sanjuan *et al.* (2016) also yields concordant temperature values ($300 \pm 30^{\circ}$ C) for all the waters and to a lesser extent, with lower temperature estimations and only for some waters, the Na-Rb, K-Sr and K-W auxiliary geothermometers defined by Sanjuan *et al.* (2016). These estimations range from 227 to 255°C, 241 to 309°C, and 244 to 246°C, respectively.

Thermodynamic binary diagrams such as $\log (H_4SiO_4)$ as a function of $\log (Na/K)$, $\log (Ca/K^2)$, $\log (Mg/K^2)$, $\log (Na/Li)$, $\log (Na/Cs)$, $\log (Na/Rb)$ and $\log (K/Sr^2)$, or representing $\log (Na/Cs)$, $\log (Na/Rb)$, and $\log (K^2/Sr)$ as a function of $\log (Na/Li)$, were constructed in order to illustrate these results.

The El Tesoro, Noria Nuevo Pizarro, Virgen del Carmen and Pozo de Tepeyahualco waters from the Los Humeros area, sampled during this study, Na-HCO₃-Cl-(SO₄) type, have temperature, TDS and pH values ranging from 16 to 23.8°C, from 0.69 to 4.1 mg/l and from 6.75 to 8.82, respectively. Those sampled from the Acoculco area (Los Azufres, Jicolapa, El Rincón, Quetzalapa and Chignahuapan), HCO₃-SO₄-Na-Ca and HCO₃-Na-Ca type, have temperature, TDS and pH values varying from 19 to 49°C, from 0.35 to 2.1 g/l and from 3.22 to 7.94, respectively. The Los Azufres 2 water, SO₄-Na-Ca type, which has the lowest values of pH (3.22) and TDS (0.35 g/l), is probably an acidic steam condensate. The Los Azufres 3 water with relatively high pH (7.94) had never been previously sampled and studied.

Apart the Nuevo Pizarro, Tepeyahualco and Los Azufres waters, all the other waters show composition in δD and $\delta^{18}O$ falling close to GMWL, which indicates their meteoric origin. The position of the Los Azufres 1 and 2 waters, at the right of GMLW suggest an enrichment in ¹⁸O due to water-rock interaction at high-temperature and/or low water-rock ratio. That of Los Azufres 3 water could result from a boiling process taking into account its $\delta^{11}B$ value and its Cl content. As for the crater lake waters (lagunas), also positioned at the right of GMLW, the Nuevo Pizarro and Tepeyahualco have probably been affected by a process of water evaporation or by a mixing with an evaporated water. Given their similar values in δD and $\delta^{18}O$,

the Chignahuapan, Jicolapa, El Rincón, Los Azufres 1 thermal waters (Acoculco area) could have the same recharge area. The relatively wide dispersion in δD and $\delta^{18}O$ values observed for the Virgen del Carmen, El Tesoro, and Quetzalapa waters suggest that these waters have different recharge areas, probably located in the Sierra Madre Oriental. Given the similar δD values measured in the Los Humeros geothermal waters and in the Los Azufres 1 and Chignahuapan thermal waters (Acoculco area), the meteoric water recharge area could be close for these two geothermal fields, following the selected interpretation for the origin of the Los Humeros geothermal waters.

The Cl/Br mass ratios of all these waters are much lower (from 70 to 700) than those of the Los Humeros geothermal waters (from 1200 to 1700). However, the higher Cl/Br values for the thermal waters are those associated with the Los Azufres 1 and 3, Chignahuapan and Tepeyahualco (600-700). The El Tesoro, Virgen del Carmen, Nuevo Pizarro and Quetchalapa waters indicate similar values of Cl/Br around 400.

For most of the thermal waters, the Ca-HCO₃ diagram shows that these waters interact with calcium carbonates and have high Ca concentrations, compared with the Los Humeros geothermal waters, which are depleted in Ca. Apart the Los Azufres thermal waters, the high Sr concentrations of the thermal waters, compared with those of the Los Humeros geothermal waters, and their ⁸⁶Sr/⁸⁷Sr ratios, ranging from 0.706272 to 0.707262, confirm that these waters are interacting with marine carbonate rocks formed during the Mesozoic period (probably the thick series of Jurassic and Cretaceous limestones, mentionned in Carrasco *et al.*, 2017a). For Los Azufres thermal waters, the Sr concentrations are high, but their ⁸⁶Sr/⁸⁷Sr signature (from 0.704778 to 0.705065) is closer to volcanic rocks (rhyolites?). These values could also traduce a mixing process between a deep end-member water in contact with volcanic rocks and low proportions of water interacting with sedimentary rocks.

The Na-K-Mg ternary plot developed by Giggenbach (1988) indicates that all the thermal waters of the Los Humeros and Acoculco areas are immature, having not reached full chemical equilibrium with the host rocks. In addition, geothermometry cannot be applied to acidic waters. However, the Na-K and Na-Li diagrams show that the Na/K and Na/Li ratios for numerous thermal waters are close to those of the Los Humeros geothermal waters. Associated with δ^7 Li values ranging from 4.7 to 6.5‰ and relatively high B concentrations (especially for Los Azufres waters), these ratios suggest that very low proportions of flux of deep geothermal waters at about 300°C could be present in these thermal waters.

Indeed, these Na/K and Na/Li ratios, and to a lesser extent, the Na/Rb and Na/Cs ratios, could be the only witness of the presence of very small flux of deep high-temperature geothermal waters in the thermal waters, because the permeability of these areas is low, these geothermal waters are completely depleted in Ca, Mg and Sr whereas the thermal waters have relatively high concentrations in these elements, and the high silica concentrations of the geothermal waters can significantly decrease due to silica precipitation during their cooling and/or their dilution with shallow waters. In this case, the geothermometers Na/Li and Na/K, and Na/Rb and Na/Cs sometimes, determined by Sanjuan *et al.* (2014; 2016a,b), give temperature estimations ranging from 248 to 353°C, close to the temperature values measured in the wells and estimated using thermometric relationships.

In the Acoculco area, not only escapes of deep gases from the geothermal reservoir reach the surface (Peiffer *et al.*, 2014b), but also small fluxes of deep waters coud be able to preserve, more or less, their original Na/K and Na/Li ratios, resulting from the temperature of their deep reservoir, even after a significant mixing with cold waters, during their ascent up to the surface.

In such a context (low-permeability environment, presence of low-salinity deep waters with very low concentrations of dissolved calcium, magnesium and strontium, precipitation of dissolved silica or dilution by shallow waters during the ascent and cooling of the deep water, dissolution of marine carbonates which provides relatively high concentrations in calcium, magnesium and strontium to the thermal waters), the application of geothermometers to thermal waters in order to estimate the temperature of deep reservoir is very difficult, but the Na/K and Na/Li ratios, and sometimes the Na/Cs and Na/Rb ratios, the boron concentrations and their isotopes, as well as analyses of associated non condensable gases (Peiffer *et al.*, 2014b) may be useful tools for high-temperature geothermal exploration.

Classical geothermometers such as Silica-chalcedony, Na-K-Ca, K-Mg and Ca-K, based on the fluid equilibration with chalcedony, muscovite, clinochlore, K-felspar and calcite, which can re-equilibrate relatively fast, probably indicate subsurface temperature estimations for these thermal waters, ranging from 60 to 100°C. The $\delta^{18}O_{H2O-SO4}$ geothermometers defined by Kusakabe and Robinson (1977), Zeng (1999) and Zeebe (2010), as well as the K-Sr and K-F auxiliary geothermometers determined by Sanjuan *et al.* (2016) and by Michard (1990), respectively, also seem to indicate concordant temperature estimations, which vary from 60 to 100°C.

Acknowledgments: We want to thank the CFE staff from Los Humeros and from Morelia for permission and recommandations to sample their wells in the Los Humeros geothermal field. We also are particularly grateful to Oscar López Romero from CFE for his help in collecting fluid samples in the field. We would like to express our gratitude to Rafael Alfaro from CFE for his help in collecting waters from thermal springs located in the Los Humeros area and to Ernesto Bahena Palomares, who was our driver and guide during all our field campaign. Finally, we are very grateful to Aída López Hernández, scientific coordinator of the GEMEX project, for her constant and valuable support.

6. Dissemination activities

BRGM participated to three GEMEX meetings, which occurred in Utretch (Netherlands), in March 2017 (F. Gal), in Akureyry (Iceland), in October 2017 (B. Sanjuan), and in Morelia (Mexico), in October 2018.

It has also contributed to a GEMEX e-News document for WP4 - Task 4.3, in 2018.

All the geochemical data obtained during this study have been uploaded and stored in the GEMEX Open Access Database (OADB), as well as the required information, by Eugenio Trumpy from CNR, responsible for maintaining this database.

References

Scientific and technical literature

- Aagarwal J.K., Palmer M.R., Bullen T.D., Arnórsson S., and Ragnarsdóttir K.V. (2000) The boron isotope systematics of Icelandic geothermal waters: 1. Meteoric water charged systems. *Geochimica et Cosmochimica Acta*, 64, n°4, 579-585.
- Aagarwal J.K., Sheppard D., Mezger K., Pernicka E. (2003) Precise and accurate determination of boron isotope ratios by multiple collector ICP-MS: Origin of boron in the Ngawha geothermal system, New Zealand. *Chemical Geology*, 199, 331-342.
- Arnórsson S., Anfdrésdóttir A. (1995) Processes controlling the distribution of boron and chlorine in natural waters in Iceland. *Geochimica et Cosmochimica Acta*, 59, n°20, 4125-4146.
- Boschetti T. (2013) Oxygen isotope equilibrium in sulfate-water systems: A revision of geothermometric applications in low-enthalpy systems. *Journal of Geochemical Exploration*, 124, 92-100.
- D'Amore F. and Panichi C. (1980) Evaluation of deep temperatures of hydrothermal systems by a new gas-geothermometer. *Geochimica et Cosmochimica Acta*, 44, 549-556.
- FP6-HITI project (2010) Geochemical data of high-temperature dilute waters sampled between 2007 and 2008, from different Icelandic geothermal areas in North-Iceland (Krafla, Namafjall, Nesjavellir). *Not published*.
- Fouillac C. et Michard G. (1981) Sodium/lithium ratio in water applied to geothermometry of geothermal reservoir. *Geothermics 10*, 55-74.
- Fournier R.O. (1979) A revised equation for the Na/K geothermometer. *Geothermal Resource Council Trans*actions, 3, 221-224.
- Fournier R.O. and Rowe J.J. (1966) Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. *American Journal of Sciences*, 264, 685-697.
- Fournier R.O. and Truesdell A.H. (1973) An empirical Na-K-Ca geothermometer for natural waters. *Geochimica et Cosmochimica* Acta, 37, 1255-1275.
- Giggenbach W.F. (1987) Redox processes governing the chemistry of fumarolic gas discharge from White Island, New Zealand. *Applied Geochemistry*, 2, 143-161.
- Giggenbach W.F. (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. *Geochimica et Cosmochimica* Acta, 52, 2749-2765.
- Giggenbach, W.F. (1991) Chemical techniques in geothermal exploration. *In: D'Amore, F., Applications of geochemistry in geothermal reservoir development*, 119-144.

- Giggenbach W.F. (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. *Earth and Planetary Science Letters*, 113, 495-510.
- Giggenbach W.F. and Stewart M.K. (1982) Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas. *Geothermics*, vol. 11, n°2, 71-80.
- Giggenbach W.F. and Goguel R.L. (1989) Collection and analysis of geothermal and volcanic water and gas discharges. Fourth Edition. *Report CD2401, Chemistry Division, DSIR, New Zealand,* p. 81.
- Kharaka Y-K., Lico M.S. et Law-Leroy M. (1982) Chemical geothermometers applied to formation waters, Gulf of Mexico and California basins. *AAPG Bulletin*, 66, 5, 588-595.
- Kharaka Y.K. and Mariner R.H. (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser, N.D. and McCulloch, T.H. (eds), Thermal history of sedimentary basins: methods and case histories. *Springer-Verlad*, New York, 99-117.
- Kusakabe M., Robinson B.W. (1977) Oxygen and sulfur isotope equilibria in the system from 110 to 350°C and applications. *Geochimica et Cosmochimica Acta*, 41, 1033-1040.
- Leeman W.P., Tonarini S., Pennisi M., Ferrara G. (2005) Boron isotopic variations in fumarolic condensates and thermal waters from Vulcano Island, Italy: Implications for evolution of volcanic fluids. *Geochimica et Cosmochimica Acta*, 69, n°1, 143-163.
- Lloyd, R.M. (1968) Oxygen isotope behavior in the sulfate-water system. *J. Geophys. Res.*, 73, 6099-6110.
- Lü Y.Y., Zheng M., Zhao P., Xu R. (2014) Geochemical processes and origin of boron isotopes in geothermal water in the Yunnan-Tibet geothermal zone. *Science China*, vol. 57, n°12, 2934-2944.
- Marini L. (1987) Geochemistry of North Ghoubbat Asal region. *Report Geotermica Italiana srl ISERST, April 1987*, 28 p.
- Michard G. (1979) Géothermomètres chimiques. Bull. du BRGM (2^{ème} série), Section III, n°2, 183-189.
- Michard G. (1990) Behaviour of major elements and some trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitic areas. *Chemical Geology*, 89, 117-134.
- Michard G., Roeckens E. (1983) Modelling of the chemical composition of alkaline hot waters. *Geothermics*, 12, n°2/3, 161-169.

- Millot R., Guerrot C., Innocent Ch., Négrel Ph., Sanjuan B. (2011) Chemical, multi-isotopic (Li-B-Sr-U-H-O) and thermal characterization of Triassic formation waters from the Paris Basin. *Chem. Geol.*, 283, 226-241.
- Mizutani Y. and Rafter T.A. (1969) Oxygen isotopic composition of sulphates, 3. Oxygen isotopic fractionation in the bisulphate ion-water system. *New Zealand Journal of Sciences*, 12, p. 54-59.
- Peiffer L., Wanner C., Spycher N., Sonnenthal E.L., Kennedy B.M., Iovenitti J. (2014a) -Optimized multicomponent vs. classical geothermometry: Insights from modeling studies at the Dixie Valley geothermal area. *Geothermics*, 51, 154-169.
- Pennisi M., Magro G., Adorni-Braccesi A. (2001) Boron and helium isotopes in geothermal fluids from Larderello (Italy). Water-rock Interaction 2001, Cidu Ed., 2001, Swets & Zeitlinger, Lisse, ISBN 90 2651 824 2, 899-902.
- Reed M.H. (1982) Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases, and an aqueous phase. *Geochimica et Cosmochimica Acta*, 46, 513-528.
- Reed M.H., Spycher N.F. (1984) Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. *Geochimica et Cosmochimica Acta*, 48, 1479-1492.
- Sakai H. (1977) Sulfate-water isotope thermometry applied to geothermal systems. *Geothermics*, 5, 67-74.
- Sanjuan B., Millot R., Asmundsson R., Brach M., Giroud N. (2014) Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments. *Chemical Geology*, 389, 60-81.
- Sanjuan B., Millot R., Dezayes Ch. (2016a) Three new auxiliary chemical geothermometers for hot brines from geothermal reservoirs. *Goldschmidt 2016 Conference Abstract, June 26*July 1, Yokohama, Japan, 1 p.
- Sanjuan B., Gal F., Millot R., Dezayes Ch., Jirakova H., Frydrych V., Nawratil de Bono C., Martin F. (2016b) - Final report on chemical geothermometers and tracers. *Final IMAGE-D7.03 report*, 74 p.
- Sanjuan B., Gal F., Millot R., Dezayes Ch., Nawratil de Bono C., Martin F. (2017) Thônex fluid geochemistry and geothermometric aplications. *Contribution to the final IMAGE-D8.02 report, Application of exploration techniques on sedimentary and basin fields, 209 p.*, 120-147, Appendix 2.
- Seal R.R.I, Alpers C.N., Rye R.O. (2000) Stable isotope systematics of sulfate minerals. In: Alpers C.N., Jambor J.L., Nordstrom D.K. Eds, Sulfate minerals - Crystallography: Geochemistry and Environmental significance, 541-602.

- Spycher N., Peiffer L., Sonnenthal E.L., Saldi G., Reed M.H., Kennedy B.M. (2014) -Integrated multicomponent solute geothermometry. *Geothermics*, 51, 113-123. DOI: DOI:10.1016/j.geothermics.2013.10.012.
- Zeebe E.E. (2010) A new value for the stable oxygen isotope fractionation between dissolved sulfate ion and water. *Geochimica et Cosmochimica Acta*, 74, 818-828.

Los Humeros geothermal system

- Arellano Gomez V.M., García A., Barragán Reyes R.M., Izquierdo G., Aragón A., Nieva D. (2003) An updated conceptual model of the Los Humeros geotermal reservoir (México). *Journal of Volcanology and Geothermal Research*, 124, 67-88.
- Arellano Gomez V.M., Torres M.A., Barragán Reyes R.M. (2005) Thermodynamic evolution of the Los azufres, México, geothermal reservoir from 1982 to 2002. *Geothermics*, 34, 592-616.
- Arellano Gomez V.M., Aragón Aguilar A., Barragán Reyes R.M., Flores Armenta M., Ramírez Montes M., Tovar Aguado R. (2008) - Análisis de datos de producción y condiciones termodinámicas del fluido de alimentación de pozos de Los Humeros, Pue. *Geotermia*, 21, n°2, 21-28.
- Arellano Gomez V.M., Barragán R.M., Ramírez M., Lopez S., Paredes A., Aragón A., Tovar R. (2015) The response to exploitation of the Los Humeros (México) geothermal reservoir. *Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015, 7* p.
- Arzate J., Corbo-Camargo F., Carrasco-Núñez G., Hernández J., Yutsis V. (2018) The Los Humeros (México) geotermal field model deduced from new geophysical and geological data. *Geothermics*, 71, 200-211.
- Barragán-Reyes R.M., Arellano Gomez V.M., Flores Armenta M., Tovar Aguado R. (2008) -Cambios químicos en fluidos de pozos del campo geotérmico de Los Humeros: evidencia de recarga profunda. *Geotermia*, 21, n°2, 11-20.
- Barragán-Reyes R.M., Arellano Gomez V.M., Ramírez Montes M., Tovar Aguado R. (2010) -Geoquimica isotópica (d18O, dD) inicial de fluidos de pozos del campo geotérmico de Los Humeros, Pue. *Geotermia*, 23, n°1, 16-25.
- Bernard R. (2008) Isotopos de H, O, He, C and N en fluidos hidrotermales del Cinturón Volcánico Mexicano. *M.S. Thesis, Posgrado de Ciencias de la Tierra, UNAM*, 157 p.
- Bernard R., Taran Y., Pennisi M., Tello E., Ramirez A. (2011) Chloride and boron behaviour in fluids of Los Humeros geothermal field (Mexico): a model based on the existence of deep acid brine. *Applied geochemistry*, 26, 2064-2073.

- Campos-Enriquez J.O, Garduño-Monroy V.H. (1987) The shallow structure of Lod Humeros and Las Derrumbadas geothermal fields, México. *Geothermics*, 16 (5/6), 539-554.
- Carrasco-Núñez G., López-Martínez M., Hernández J., Vargas V. (2017a) Subsurface stratigraphy and its correlation with the surficial geology at Los Humeros geothermal field, eastern Trans-Mexican volcanic belt. Geothermics, 67, 1-17.
- Carrasco-Núñez G., Hernández J., De León L., Dávila P., Norini G., Bernal J.P., Jicha B., Navarro M., López P. (2017b) - Geologic map of Los Humeros volcanic complex and geothermal field, eastern Trans-Mexican Volcanic Belt. *Terra Digitalis*, 1(2), 1-11.
- Carrasco-Núñez G., Bernal J.P., Dávila P., Jicha B., Giordano G., Hernández J., Navarro M. (2018) - Reapraisal of Los Humeros volcanic complex by new U/Th zircon and 40Ar/39Ar dating: implications for greater geothermal potential. *Geochem.Geophys. Geosyst.*, 19. <u>https://doi.org/10.1002/2017GC007044</u>.
- Cedillo F. (1997) Geología del subsuelo del campo geotérmico de Los Humeros, Puebla, México. Internal report CFE, México, 30 p.
- Cedillo F. (1999) Modelo hidrogeológico de los yacimientos geotérmicos , Puebla, México. Geotermia, Revista Mexicano de Geoenergía, 15-3, 159-170.
- Cedillo-Rodríguez F. (2000) Hydrogeologic model of the geothermal reservoirs from Los Humeros, Puebla, México. *Proceedings World Geothermal Congress 2000, Kyushu Tohoku, Japan, May 28 June 10, 2000,* 6 p.
- Cortés A., Durazo J., Farvolden R.N. (1996) Studies of isotopic hydrology of the Basin of México and vicinity: annoted bibliography and interpretation. *Journal of Hydrology*, 198, 346-376.
- Davila-Harris P., Carrasco-Núñez G. (2014) An unusual syn-eruptive bimodal eruption: the Holocene Cuicuiltic Member at Los Humeros caldera, México. *Journal of Volcanology and Geothermal Research*, 271, 24-42.
- De la Cruz V. (1983) Estudio geológico a detalle de la zona geotérmica de Los Humeros, Pue. *Internal report 10/83, CFE*, 51 p.
- Cortés A., Durazo J., Farvolden R.N. (1997) Studies of isotopic hydrology of the basin of Mexico and vicinity: annoted bibliography and interpretation. *Journal of Hydrology*, 346-376.
- Ferriz H. and Mahood G. (1984) Eruption rates and compositional trends at Los Humeros volcanic center. Puebla, México. J. Geophys. Res., 89 (B10), 8511-8524.
- García-Gutiérrez A. (2009) Estado térmico inicial del campo geotérmico de Los Humeros, Puebla, México. Geotermia, 22, n°1, 59-70.

- García-Soto A.Y., Pandarinath K., Marrero-Ochoa J.E., Diaz-Gomez C. (2016) Solute geothermometry of Cerro Prieto and Los Humeros geotermal fields, Mexico: considerations on chemical characteristics of thermal water. *Arabian Journal of Geoscience*, 9, 517, 11 p.
- Gutiérrez-Negrín L.C.A., Izquierdo-Montalvo G. (2010) Review and update of the main features of the Los Humeros geothermal field, Mexico. *Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25-29 April 2010, 7* p.
- Izquierdo G., Gutiérrez-Negrín L.C.A., and Aragón A. (2009) Considerations on the origin of acid fluids in Los Humeros geothermal field, Pue., Mexico. *GRC Transactions*, vol. 33, 59-62.
- Izquierdo G., Arellano V.M., Aragón A. (2008) Características mineralógicas y microtermométricas del yacimiento geotérmico de Los Humeros, Pue., México. *Geotermia*, 21, n°2, 2-10.
- López-Hernández A. (1995) Estudio regional volcánico y estructural del campo geotérmico de Los Humeros, Puebla, México. *Geotermia, Revista Mexicana de Geoenergia*, 11 (1), 17-36.
- López-Romero O. (2006) Actualización del modelo geoquímico de Los Humeros, Pue., México. *Geotermia*, 19, n°1, 23-32.
- Macek M., Vilaclara G., Lugo A. (1994) Changes in protozoan assemblage structure and activity in a stratified tropical lake. *Mar. Microb. Food Webs*, 8, 235-249.
- Martinez M., Fernandez R., Visquez R., Vega R., Reyes S.A. (1983) Asimilación del método magnetotelurico para la exploración geotérmica. *Quinto informe técnico CICESE-IIE*, México.
- Martínez-Serrano R.G (2002) Chemical variations in hydrothermal minerals of the Los Humeros geotermal system, Mexico. *Geothermics*, 31, 579-612.
- Norini G., Gropelli G., Sulpizio R., Carrasco-Núñez G., Davila-Harris P., Pellcioli C., Zucca F., De Franco R. (2015) Structural analysis and thermal remote sensing of the Los Humeros volcanic complex: implication for volcano structure and geothermal exploration. *Journal of Volcanology and Geothermal Research*, 301, 221-237.
- Peïfer L., Carrasco-Núñez G., Mazot A., Villanueva-Estrada R.E., Inguaggiato C., Bernard Romero R., Rocha Miller R., Hernández Rojas J. (2018). Soil degassing at the Los Humeros geothermal field (Mexico). *Journal of Volcanology and Geothermal Research*, 356, 163-174.
- Pinti D.L., Castro M.C., Lopez-Hernández A., Han G., Shouakar-Stash O., Hall Ch.M., Ramírez-Montes M. (2017) - Fluid circulation and reservoir conditions of the Los Humeros Geotermal Field (LHCF), México, as revealed by a noble gas survey. *Journal of Volcanology* and Geothermal Research, 333-334, 104-115.

- Portugal E., Izquiedo G., Barragan R.M., Romero B.I. (2002) Hydrodynamic model of Los Humeros geotermal field, México, based on geochemical, mineralogical and isotopic data. *Geofísica Internacional*, 41, n°4, 415-420.
- Prol-Ledesma R.M. (1998) Pre- and post-exploration variations in hydrothermal activity in Los Humeros geothermal field, Mexico. *Journal of Volcanology and Geothermal Research*, 83, 313-333.
- Quijano J.L., Latorre D.C., Payne B.R. (1981) Algunos aspectos de la geohidrogeología isotópica de la región de Valsequillo. *Proceedings of the Interamerican Symposium on Isotope Hydrology, Colombia, 18-22 August, 1980, 15 p.*
- Tello H.E. (2005) Estado de equilibrio Soluto-Mineral y saturación de Minerales de alteración en fluidos geotérmicos de alta temperature. *Facultad de Ingeniería, UNAM, PhD Thesis*.
- Verma S.P. (1983) Magma genesis and chamber processes at Los Humeros caldera, México. Nd and Sr isotope data. *Nature*, 302, 52-55.
- Verma S.P. (2000) Geochemical evidence for a lithospheric source for magmas from Los Humeros caldera, Puebla, México. *Chemical Geology*, 164, 35-60.
- Verma S.P., Tello E., Arellano V., Nieva D. (1998) Acidic fluid in Los Humeros geothermal reservoir. A preliminary outlook. In Proceedings 23rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 234-239.
- Yáñez García C, Casique Vázquez J. (1980) Informe geológico del Proyecto geotérmico Los Humeros-Las Derrumbadas, Estados de Puebla y Veracruz, México. Internal CFE report (unpublished).

Acoculco geothermal system

- Avellán D.D, Macías J.L., Layer P.W., Sosa-Ceballos G., Marti J. (2017) Geology of the Acoculco caldera complex at the eastern Trans-Mexican Volcanic Belt (México). Poster presentation. IAVCEI 2017, Scientific Assembly Fostering Integrative Studies of Volcanoes. Portland Oregon, USA.
- Bernard-Romero B.R. (2008) Nuevos datos geoquímicos de yacimientos geotermales de alta temperature del cinturón vólcanico mexicano: Isótopos de helio, boro, nitrógeno y elementos traza. (*Master Thesis*) Universidad Nacional Autónoma de México, 124 p.
- Canet C., Hernández-Cruz B., Jiménez-Franco A., Pi T., Peláez B., Villanueva-Estrada R.E., Alfonso P., González-Partida E., Salinas S. (2015a) - Combining ammonium mapping and short-wave infrared (SWIR) reflectance spectroscopy to constrain a model of hydrothermal alteration for the Acoculco geotermal zone, Eastern México. *Geothermics*, 53, 154-165.
- Canet C., Trillaud F., Prol-Ledesma R.M., González-Hernández G., Peláez B., Hernández-Cruz B., Sánchez-Córdova M.M. (2015b) Thermal history of the Acoculco geotermal system,

Eastern Mexico: insights from numerical modeling and radiocarbon dating. *Journal of Volcanology and Geothermal Research*, 305, 56-62.

- Canet C., Arana L., González-Partida E., Pi T., Prol-Ledesma R.M., Franco S.I., Villanueva-Estrada R.E., Camprubí A., Ramírez-Silva G., Lopez-Hernández A. (2010) - A statisticsbased method for the short-wave infrared spectral analysis of altered rocks: an example from the Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt. *Geochemical Exploration*, 105, 1-10.
- García-Palomo A., Macías J.L., Jimenénez A., Tolson G., Mena M., Sánchez-Núñez J.M., Arce J.L., Layer P.W., Santoyo M.A., Lermo-Samaniego J. (2017) NW-SE Pliocene-Quaternary extensión in the Apan-Acoculco región, Eastern Trans-Mexican Volcanic Belt. *Journal of Volcanology and Geothermal Research*. <u>https://doi.org/10.1016/j.jvolgeores.2017.11.005</u>.
- Ledezma-Guerrero O. (1987) Hoja Calpulalpan 14Q-h (3), con Resumen de la geología de la hoja Calpulalpan, Estados de México, Puebla, Tlaxcala e Hidalgo. Instituto de Geología, Universidad Nacional Autónoma de México, México. Quetzalapa región, soouthern México. *Rev. Mex. Cienc. Geol.*, 15, 167-180.
- Lermo J., Antayhua Y., Bernal I., Venegas S., Arredondo J. (2009) Monitoreo sísmico en la zona geotérmica de Acoculco, Pue., Mexico. *Geotermia*, 22, n°1, 40-58.
- Lopez-Hernández A., Castillo-Hernández D. (1997) Exploratory drilling at Acoculco, Puebla, Mexico: a hydrothermal system with only non-thermal manifestations. *Geothermal Resource Council Transactions*, 21, 429-433.
- Lopez-Hernández A., García-Estrada G., Aguirre-Díaz G., González-Partida E., Palma-Guzmán H., Quijano-León J.L. (2009) - Hydrothermal activity in the Tulancigo-Acoculco Complex, central México: exploration studies. *Geothermics*, 38, 279-293.
- Nixon G.T. (1982) The relationship between Quaternary volcanism in central México and the seismicity and structure of subducted ocean lithosphere. *Geol. Soc. Am. Bull.*, 93, 514-523.
- Peiffer L., Bernard-Romero R., Mazot M., Taran Y.A., Guevara M., Santoyo E. (2014b) Fluid geochemistry and soil gas fluxes (CO₂-CH₄-H₂S) at a promissory Hot Dry Rock geotermal system: the Acoculco caldera, Mexico. *Journal of Volcanology and Geothermal Research*, 284, 122-137.
- Peiffer L., Wanner Ch., Pan L. (2015) Numerical modelling of cold magmatic CO₂ flux measurements for the exploration of hidden geothermal systems. *AGU publications, Journal of Geophysical Research: Solid Earth*, 22 p.
- Polak B.G., Prasalov E.M., Kononov V.I., Verkovsky A.B., González A., Templos L.A., Espíndola J.M., Arellano J.M., Manon A. (1982) - Isotopic composition and concentration of inert gases in Mexican hydrothermal systems. *Geofis. Int.*, 21, 193-227.

- Sosa-Ceballos G., Macías J.L., Avellán D.R., Salazar-Hermenegildo N., Boijseauneau-López M.E., Pérez-Orozco J.D. (2018) - The Acoculco caldera complex magmas: Genesis, evolution and relation with the Acoculco geothermal system. *Journal of Volcanology and Geothermal Research*, 358, 288-306.
- Tello Hijonosa E. (1986) Geoquímica de la zona geotérmica de la caldera de Acoculco, Puebla. Informe 34-86, Departamento de exploración, Comisión Federal de Electricidad, 14 p + anexos.
- Tello Hijonosa E. (1987) Composición química e isotópica del agua de los manantiales de la zona geotérmica de Acoculco, Puebla. Informe 23/87, Departamento de exploración, CFE-GPG.
- Tello Hijonosa E. (1991) Química de los fluidos hidrotermales de la zona geotérmica de la Caldera de Acoculco. *Geotermia*, 7, n°2, 201-230.
- Tello Hijonosa E., Ruiz Aceves L., Velázquez N. (1995) Geoquímica de lodos de perforación del pozo EA-1, Acoculco, Puebla. Informe GQ-AC-012/95, Comisión Federal de Electricidad, 4 p + anexos.
- Verma P. (2001) Geochemical evidence for a lithospheric source for magmas from Acoculco Caldera, Eastern Mexican Volcanic Belt. International Geology review, 43, 31-51.
- Ziagos J.P., Blackwell D.D., Mooser F. (1985) Heat flow and the thermal effects of subduction in Southern México. *Journal of Geophysical Research*, 90, 5410-5420.

Chapter 4

DIFFUSE DEGASSING

4.1 Methods and sampling approach

In total three soil gas surveys were conducted at the Los Humeros Geothermal Field. The first survey in 2017 (5 weeks) concentrated on the measurement of CO₂ efflux covering an area 4x6km. CO₂ efflux was selected as a scouting parameter to identify areas of interest for future planned surveys. A regular spaced sampling grid (25 x 200 m) was defined. Closely spaced measurements (25 m) were performed along sampling profiles oriented perpendicular to the main fault strike to ensure that small variations in soil gas emissions can be detected. By means of the accumulation chamber method, CO₂ efflux can be measured in-situ in a very short time (60s-120s). This allows maximum flexibility during the survey and when necessary further sampling sites could easily be added for a better delineation of areas characterized by increased gas emissions. δ^{13} C-CO₂ samples were collected from selected sites and analyzed at the laboratory for compound-specific isotope analysis at the German Research Center for Geoscience (GFZ) in Potsdam with a Delta V Plus gas chromatograph coupled to an isotopic ratio mass spectrometer. Samples were collected from the major geothermal production field in areas with low, intermediate and high CO₂ effluxes to identify the origin of CO₂ emissions. No CO₂ efflux measurements were performed within the village to avoid artificial effects (Fig. 4.1).

During the second survey in 2018 (5 weeks) we focused on a smaller core region, which was identified as a result of the CO₂ efflux scouting survey. The campaign in 2018 concentrated on the radiometric measurement of Radon (²²²Rn) and Thoron (²²⁰Rn) activity concentrations. Due to the long measuring time of ²²²Rn (15 min) the point distance had to be increased by 25 m. Nevertheless, the sampling campaign followed the same grid as of 2017. Soil temperatures were measured in 50 cm depth with a GMH 285-BNC thermocouple. Furthermore, helium samples were taken from active degassing sites to determine the ³He/⁴He ratios, which are normalized to the air ratio (R/R_A). The isotopic signature of helium yields important information about the origin and history of a fluid sample. The samples were analyzed in the noble gas laboratory of the GFZ with a Helix SFT mass spectrometer. Please see table 4.1 for a summary of all investigated parameters.

Parameters	Size of study area [km]	Grid spacing [m]	No of sample s	Analysis/ Sampling procedure	Sampling time [min]
CO ₂ efflux	6 x 4	25 x 200	2823	In-situ, on surface	1-2
δ ¹³ C-CO ₂	Selected sites	Single points	44	Lab, 1m below surface (b.s.)	10
²²² Rn	5.8 x 2.4	50 x 200	883	In-situ, 1m b.s.	15
²²⁰ Rn	5.8 x 2.4	50 x 200	867	In-situ, 1m b.s.	15
Ts	5.8 x 2.4	50/100 x 200	858	In-situ, 50 cm b.s.	10
³ He/ ⁴ He	Selected sites	Single points	6	Lab, Variable depth (max. 30 cm b.s)	10

Table 4.1 Summary of measured parameters

4.2 Determination of CO₂ efflux

Herein, all measurements of diffuse CO_2 emission rates were performed according to the accumulation chamber method described in detail by Chiodini et al. (1998). The measurement of CO_2 efflux allows an efficient real time analysis, without any necessary ground installation of sampling devices. Two portable diffuse flux meter (developed by West Systems Ltd.) have been used for analyses of CO_2 efflux. The instrument is equipped with a LICOR LI-820 single path, dual wavelength, nondispersive infrared (NDIR) carbon dioxide analyzer (West Systems Ltd., 2002). All measurements were performed with the accumulation chamber type A due to its higher sensitivity to lower fluxes (Jolie et al., 2012).

4.3 Determination of alpha radiation

The radiometric measurement of Radon and Thoron activity concentration in soil gas was performed with two RTM2200 monitors (developed by SARAD Ltd.) for portable and stationary applications. The RTM 2200 is an active instrument that allows in-situ data reading in the field. The gaseous isotopes ²²²Rn (Radon) and ²²⁰Rn (Thoron) have been studied simultaneously. The measurement enables to determine their short living radon daughter products ²¹⁸Po in fast mode, measuring 15 min at each sampling site. For the preparation of the sampling site a metal probe was inserted approximately 1 m into the ground. The soil gas was pumped from 1 m below the surface at a constant flow rate through a tube to the RTM2200 gas analyzer.

4.4 Mobile open path laser and soil gas survey

The BGS survey consisted of wide area mobile traverses of areas of interest using CO_2 laser detection, combined with point measurements, typically in a grid formation, for soil gas, gas flux and temperature, and selected gas samples collected for laboratory analysis.

Mobile laser surveys were carried out on foot to measure near ground atmospheric CO_2 concentrations over five discrete pre-selected areas (designated areas 1 to 5 in Fig. 4.7) between 20th February and 1st March 2018. The survey areas were selected on the basis of earlier CO_2

flux surveys performed project partners at GFZ (Section 4.1), or information from the UAV team or the site operator, CFE. The surveys consisted of a hand-held lightweight aluminium frame-mounted open path CO₂ laser combined with a back-mounted GasFinder 2 CO₂ laser unit (Boreal Laser Inc.), 2 x 6V battery pack and differential GPS (Trimble Inc.,). Lines were walked at an average speed of 4.0 km/h with a parallel line spacing of 10 m – 15 m. Data were recorded at a frequency of 1 Hz and, using proprietary GasMap[®] software, were displayed in real time on a dedicated Panasonic ToughBook.[®] Location data were recorded simultaneously via a Trimble[®] GPS.

Soil gas and flux measurements were carried out as a series of linear traverses across areas surveyed by the mobile laser, with 25 m point spacing intervals and a parallel line spacing of 100 m. Point measurements of CO₂ and CH₄ flux were made at the soil surface using a non-invasive closed-loop accumulation chamber method (West Systems flux meter equipped with Li-COR[®] model LI820 infra-red analysers). Point measurements of soil gas (CH₄, CO₂, O₂, H₂S, H₂, and a residual approximately equated to N₂) were made at the same locations by driving a narrow diameter hollow steel push probe 0.5-1 m into the ground. Soil gases were determined directly from the push probe using field instruments (Geotechnical Instruments GA5000[®] gas analyser and Huberg Laser One[®] methane detector). Temperature measurements were also taken at these same locations using a Hanna HI-93510[®] thermistor thermometer fitted with a custom-built long reach (c.50 cm) temperature probe.

For selected sampling points, primarily governed by a change in the characteristics of the *in situ* soil gas, flux or temperature measurements, gas samples were also collected for the determination stable isotopes of carbon in CO₂. Sample gas was flushed into a non-sterile 50 ml luer slip syringe via a two-way Omnifit[®] stopcock fitted to the push probe. The sample (c.24 ml) was then transferred to evacuated 12 ml glass Exetainer[®] vials with a septum screw cap using a non-sterile hypodermic needle. The samples were transported to the UK by air for laboratory determination of stable isotopes of carbon in CO₂ by continuous flow isotope ratio mass spectrometry.

4.5 Results

Within the following chapter we refer to specific areas by using capital letters A-E (Fig. 4.6) or, for the BGS survey, numerical references 1-5 (Fig. 4.7). CO₂ efflux values range from nondetectable (detection limit is 0.03 ppm/s) in the northwestern part of the geothermal field up to 838 g m⁻²d⁻¹ in the southwest of Los Humeros village (Area E). Furthermore, there is a clear correlation between elevated CO₂ emissions (> 33 g m⁻² d⁻¹) and areas with known geothermal surface activity however, degassing was also observed in areas without obvious surface activity. This applies to all areas from A to E (Fig. 4.6). Active degassing sites are very prominent almost all along the Los Humeros fault, particularly on its fractured footwall and within its fault scarp. Surface alteration is a typical feature along the northern part of the Los Humeros fault, which coincides with increased degassing rates (Fig.4.2). Similar spatial variations can be identified for Radon activity concentration, which ranges from 110 Bq m⁻³ up to 100,730 Bq m⁻³. The highest value was determined in Area C, which is ~100 m north of the Los Humeros village. The overall trend of 222 Rn correlates with CO₂ efflux, but elevated 222 Rn values have been measured across a larger area (Fig.4.4).

The maximum soil temperature of 91.3 °C was measured in Area C, in the southern section of the Loma Blanca fault. Even though surface temperatures show a less prominent spatial pattern they do correlate with 222 Rn and CO₂ (Fig. 4.5).

 δ^{13} C-CO₂ isotopic compositions range from -19.1 to -1.2. The more negative values correspond to biogenic sources (mostly C4 plants like maize), the less negative values originate from a deeper source. As seen in figure 4.3, almost all sites which are characterized by elevated degassing rates (> 33 g m⁻²d⁻¹), show a hydrothermal or mixed δ^{13} C-CO₂ isotopic composition, except for one sample which is possibly contaminated by air (Fig. 4.3).

All results for helium isotopic ratios ${}^{3}\text{He}/{}^{4}\text{He}$ are illustrated in figure 4.5. Four samples show a clear trend towards mantle derived helium, whereas the other two have been sampled at locations where a saturation of atmospheric CO₂ must have been present in the first 50 cm below the surface.

Parameters	Min	Max	Mean
CO2 efflux [g m ⁻ ² d ⁻¹]	0	839	8.5
²²² Rn [Bq m ⁻³]	110	100,73 0	3,610
²²⁰ Rn [Bq m ⁻³]	135	35,063	3,835
Тs [°С]	5.9	91.3	17.5
³ He/ ⁴ He [R/R _a]	2.31	4.88	3.4
δ ¹³ C-CO ₂ [δ ‰ vs. VPBD]	-19.2	-1.2	

Table4.2 Minima, maxima and mean values of measured parameters

Population	Fraction [%]	Mean efflux [g m ⁻ ² d ⁻¹]	Interval [g m ⁻² d ⁻¹]
Anomalous	1.9	139.8	47.8 - 839
Mixture	0.9	40.5	33.3 – 47.8
Background	97.2	6	0.1 – 33.3

Table 4.3 Statistical parameters for CO₂ efflux

Population	Fraction [%]	Mean concentration [Bq m ⁻³]	Interval [Bq m ⁻³]			
Anomalous	1.6	35,024.4	22,218 - 100,727			
Mixture	0.3	18,143.6	15,724 - 22,218			
Background	98.1	3,030.7	110 – 15,724			

Table 4.4 Statistical parameters for ²²²Rn activity concentrations

Spatial plots of the mobile laser traverses, along with point measurement data collected during this fieldwork, were generated in ArcGIS[®] and projected onto a georeferenced satellite imagery base map, alongside data collected by other GEMex project partners where appropriate (e.g. in Fig. 4.13). Laser data are presented as raw concentrations of volume % CO₂ as an illustration in Figs. 4.8 and 4.9, but primarily they are presented as absolute differences in adjacent 5 point averaged data values since this did not result in any appreciable loss of detail. The 5 point average differences were used in attempting to identify small but significant changes in background CO₂ concentrations over relatively short time periods.

Data from the mobile laser surveys are plotted and viewed together with point measurements of soil gas and flux for each of the five survey areas to determine whether any relationships between datasets could be identified (Figs. 4.8 to 4.12). The spatial distribution of stable isotopes of carbon (δ^{13} C-CO₂) across areas 1 to 5 are shown in Fig. 4.18.

4.6 Discussion

Welded ignimbrite deposits that act as a low-permeability barrier (Gutiérrez-Negrín and Izquierdo-Montalvo, 2010) as well as hydrothermal alteration within the fault zones cause heterogeneous gas emissions along mapped faults. The presence of very high degassing areas (CO_2 efflux > 300 g m⁻²d⁻¹) at the surface can only be explained by convection along permeable faults/ fractures. There is a potential structural link between Area C and Area E, which is 105

supported by the results of Radon measurements. The Los Humeros fault might be much more complex in the subsurface than expected. Its horse tailing structure could possibly evolve around Area E (Fig. 4.6), which could have an effect on structural permeability. Another theory is that there is a single structure connecting Area E towards Area C and continuing to La Cuesta Fault. The area SE of Los Humeros village, where the general fault strike changes from NNE-SSW to E-W appears as an area of increased gas emissions (Fig. 4.2). This is due to the change in soil cover (from unconsolidated soils to humus with pine forest). The overall spread in δ^{13} C-CO₂ values shows different sources of CO₂ due to biological processes (-30 to -10‰), contamination with atmospheric CO₂ in the upper soil portion (-8 ‰), magmatic source (-8 to -5‰ MORB type gases), and sedimentary or hydrothermal CO₂ (-5 to 2.73 ‰). Limestone samples from the basement taken by González-Partida et al. (1993) show a δ^{13} C-CO₂ composition ranging from 0.32 to -0.8 ‰. Portugal et al. (1994) sampled geothermal fluids from wells, which show δ^{13} C-CO₂ composition ranging from -4.5 to -6.6 ‰.

All samples taken from areas with increased gas emissions have less negative δ^{13} C-CO₂ values, coinciding with sampled geothermal fluids from Portugal et al. (1994) and indicating a deep origin. Interestingly, some of the very low CO₂ effluxes, which have been assigned to the background population (from 14 g m⁻²d⁻¹ and higher), still show magmatic/hydrothermal δ^{13} C-CO₂ signatures. Elevated ³He/⁴He ratios (> 3) indicate a mantle contribution. By carbon isotopic analysis of CO₂ and helium isotopic analysis ³He/⁴He it is indicated that faults and fractures in the subsurface have a link to the deep geothermal reservoir and favor the upflow of hydrothermal fluids. This can also be seen by the observed thermal anomalies at the surface. Results from all three measured parameters indicate that the most permeable zone in the Los Humeros geothermal field is located in Area E (SW) and extends towards the north (Area A) and northeast (Area B, C, and D). Our results suggest that the combination of various soil gas measurements is a useful approach to indicate major structural discontinuities in the subsurface that act as migration pathways of hydrothermal fluids. Furthermore, we would like to point out that a strategic sampling network plays a major role not only to identify but also determine the geometry and distribution of permeable volcano-tectonic structures.

The objective of the BGS soil gas campaign was to provide more detail within areas of interest emerging from the May 2017 campaign, rather than attempt to duplicate those measurements. Nonetheless, around 30% of flux sample points used during the current survey fell on the existing CO_2 flux survey lines, and measurements of CO_2 flux taken in February 2018 are compared in Fig. 4.13 with CO_2 flux taken as part of the May 2017 scoping exercise. Given the elapsed time between surveys and the accuracy constraints of the field GPS systems, none can realistically be considered field duplicates and comparisons between data from the two surveys are, at this stage, confined to a visual comparison on an area by area basis. Even so, despite the time elapsed and limited overlap, the datasets for this region of the Los Humeros both indicate coincident areas of relatively high CO_2 flux. The circled points in Figs. 4.14 and 4.15 highlight areas where the datasets show coincident elevated soil gas CO_2 and CO_2 flux. The green points 106

represent flux data collected during the May 2017 campaign. The areas outlined display elevated concentrations in both datasets, falling within an approximate distance of 5 m from each other. These areas warrant further investigation, e.g. a closer examination of this data in view of other available survey data.

The Los Humeros campaign was one of the first field deployments of the lightweight hand held open path laser prototyped by BGS. The laser unit and battery pack are mounted on a rigid frame backpack, with a rugged laptop providing the user interface with real time displays of CO_2 concentration and GPS position. This configuration provides greatly improved mobility across terrain that is difficult to survey even in all terrain/off-road vehicles. The trade-off is in the sensitivity that can be achieved. Nonetheless, a number of hot spots were identified as highly elevated CO_2 concentrations measured during the mobile laser surveys, principally in areas 1 and 3. These were confirmed by point measurements of soil gas and gas fluxes (Figs. 4.8 to 4.12). Particularly the hot spot at Area 3 (Fig. 4.16) was previously unrecorded, having been missed by all previous grid-based surveys.

The previously unrecorded area of high CO₂ concentration detected by the mobile laser system is shown in more detail in Fig. 4.16, where the mobile laser CO₂ data are shown as 5-point average differences. The absolute mobile laser CO₂ concentrations (the raw data) are shown in Fig. 4.17 for comparison. As can be seen, the anomalously high concentrations identified in the absolute data are preserved in the 5-point averaged difference data. The mobile laser CO₂ data are also confirmed by a number of point measurements of CO₂ in soil gas and CO₂ flux. The anomaly was initially identified whilst traversing the gravel track in area 3 with the mobile laser. The extent of the anomalous zone was then better defined to extend along a length of approximately 18 m, oriented linearly NW – SE.

The mobile laser data show the extent and orientation of the high CO₂ anomaly, with CO₂ concentrations significantly above the atmospheric background. A static laser log also detected elevated CO₂, with peak values >1000 mg kg⁻¹. Soil gas and flux measurements made adjacent to the static laser log were also indicative of very anomalously high CO₂, with 20.7% CO₂ in soil gas at 0.90 m depth and a CO₂ flux of 1464 g m⁻² day⁻¹ (Fig.4.17). Slight discrepancies in the locations of the soil gas and flux points is likely to be due to the accuracy of the GPS units used.

The extremely localised nature of observed anomalies i.e. the very rapid change from anomalously high concentrations to background over distances of a few meters or less, was evident from both the soil gas/flux traverses and the mobile laser surveys. This may imply that the transport of free gas through soil is discrete and could be evidence of distinct degassing pathways, as opposed to diffuse CO_2 gas dispersing though a contiguous layer of soil or overburden cover. Taking a wide area open path laser approach and combining with 5 point average absolute difference is appropriate, even helpful, in being potentially able to link soil gas anomalies to underlying faults, but there is a risk, even with a parallel line spacing of 10 m, the mobile laser could fail to detect extremely discrete areas of elevated CO_2 concentration. Even so, the identification and subsequent quantification of this previously unrecorded anomaly demonstrates the versatility and screening potential of the lightweight open path laser. Where CO_2 flux is more diffuse, it may be more appropriate to consider absolute CO_2 concentrations over the absolute differences.

Finally, the spatial distribution of stable isotopes of carbon (δ^{13} C-CO₂) across the BGS survey areas 1 to 5 is shown in Fig. 4.18. The distribution is consistent with the findings of the May 2017 survey and a deep geogenic origin of CO₂ (δ^{13} C-CO₂ > -15‰). This is most apparent in areas 1, 3 and 4 (i.e. Areas A and E of the May 2017 survey, NW and S of Los Humeros village), compared with isotope ratios more typical of biogenic CO₂ (δ^{13} C-CO₂ < -15‰) in area 5 to the south east of the BGS survey area (Area D), and a mixed distribution in area 2 (Area B) where the 2014 vent is found.

Acknowledgements

We would like to thank all Mexican and German students who where part of our field campaigns and without them this extensive field surveys would not have been possible. We acknowledge the Comision Federal de Electricidad (CFE) for kindly providing support and advice and for granting access to their geothermal fields. We thank the entire GEMex team with scientists from Mexico and Europe.

References

- Chiodini, G., Cioni, R., Guidi, M., Raco, B., & Marini, L. (1998). Soil CO2 flux measurements in volcanic and geothermal areas. *Applied Geochemistry*, *13*(5), 543–552. https://doi.org/10.1016/S0883-2927(97)00076-0
- Gutiérrez-Negrín, L.C. & Izquierdo-Montalvo, G., 2010. Review and update of the main features of the Los Humeros geothermal field, Mexico. Proceedings World Geothermal Congress, Bali, Indonesia, April 2010.
- González-Partida, E., Barragán, R.M., Arellano, V.M., 1993. Las especies carbónicas del fluido geotérmico de Los Humeros, Puebla, México. Geotermia 9, 205–218.
- Jolie, E., Klinkmueller, M., & Moeck, I. (2012). Diffuse Degassing Measurements as a Geochemical Exploration Tool A Case Study From the Brady's Geothermal System (Nevada, USA). *GRC Transactions*, *36*, 685–688.
- Portugal, E., Verma, M.P., Barragán, R.M., Mañón, A., 1994. Geoquímica isotópica de 13C, D,y 18O de fluidos del sistema geotérmico Los Humeros Puebla (México). Geofis. Int. 33, 607–618.

Figure 4.1 Survey design A: CO₂ efflux measurements (blue points), δ^{13} C-CO₂ samples (purple points) and natural geothermal surface manifestations (green stars; steaming/hot ground, argillic alteration) and B: ²²²Rn (Radon), ²²⁰Rn (Thoron) and T_s (soil temperatures) (blue points) and helium samples (green points). Black solid lines show mapped fault traces. Black dashed lines are inferred faults.

Figure 4.2 Interpolation map of CO_2 efflux excluding values > 100 g m⁻²d⁻¹. Values above > 100 g m⁻²d⁻¹ are shown as graduated triangles in turquoise. Small black dots represent sampling locations. Dark grey rectangle shows the Los Humeros village.

Figure 4.3 Overview of the distribution of δ^{13} C-CO₂ samples and their isotopic signature.

Figure 4.4 Interpolation map of Radon. Small block dots illustrate sampling sites.

Figure 4.5 Interpolation map of soil temperatures together with sampling sites of soil temperatures (black points). The green dots illustrate 3 He/ 4 He ratios.

Figure 4.6 Comparison of all three parameters. Bold capital letters indicate areas of interest described in the text. Dark-grey square illustrates Los Humeros village.

Figure 4.7 BGS soil gas survey areas 1 to 5.

Soil gas CH4, volume ppm

Figure 4.11. Area 4, upper panels: CO_2 laser survey, absolute differences in adjacent 5 point averaged data, with CO_2 flux data from GFZ survey as green transect points (left) and CO_2 flux (right). Centre panels: CH_4 flux (left) and CO_2 in soil gas (right). Lower panels: CH_4 in soil gas (left) and temperature (right).

Figure 4.12 Area 5, upper panels: CO_2 laser survey, absolute differences in adjacent 5 point averaged data, with CO_2 flux data from GFZ survey as green transect points (left) and CO_2 flux (right). Centre panels: CH_4 flux (left) and CO_2 in soil gas (right). Lower panels: CH_4 in soil gas (left), and temperature (right).

Figure 4.13. Transect selection for BGS point measurements (CO₂ flux shown) based on CO₂ flux data from GFZ.

Figure 4.14. Mobile laser 5-point absolute difference and \mbox{CO}_2 flux data for Area 1

Figure 4.15. Mobile laser 5-point absolute difference and CO_2 soil gas data for Area 1

Figure 4.16. Previously unrecorded area of high CO₂ concentration detected by the mobile laser system (5-point average differences, left), subsequently confirmed by both soil gas measurements and CO₂ flux, in Area 3.

Figure 4.17. Previously unrecorded area of high CO₂ concentration detected by the mobile laser system (absolute CO₂ concentrations, left), subsequently confirmed by both soil gas measurements and CO₂ flux, in Area 3.

Figure 4.18. ¹³C isotope ratios in soil gas CO₂ survey areas 1-5.

Chapter 5

LABORATORY EXPERIMENTS FOR THE STUDY OF FLUID/ROCK INTERACTION PROCESSES AT HIGH-TEMPERATURE

5.1 Introduction

5.1.1 Aim of the experiments

Several fluid-rock interaction experiments at different temperatures (T) and pressure (P) have been carried out within Task 4.3 to constrain the physical-chemical processes occurring in the upper reservoir of the geothermal field of Los Humeros (Mexico). Lab experiments interested only this geothermal field (and disregarded Acoculco), since the starting materials (rocks and fluids) could not be made available in the allotted timeframe. Purpose of the experiments is to enhance understanding of the chemical and mineralogical changes occurring in both rocks and fluids as a result of the fluid-rock inter-reactions at medium to relatively high-temperature (200-300°C). The results will be compared with various evidences (e.g. rock alteration, fluid chemistry...) observed in nature, to better model the geothermal field itself and to constraint the P-T conditions of alteration of the reservoir rocks.

5.1.2 Geothermal reservoirs in Los Humeros

Los Humeros Geothermal Field (LHGF) has two productive reservoirs:

- i) <u>Shallow reservoir</u>. It is formed by pre-caldera pliocenic andesites of the Teziutlan Formation. The existing wells encounter its top at depth from 1650 to 2328 m above sea level (e.g. Giordano et al. 2017; ground level is around 2800 2900 m above sea level). This Formation has a 1200 m mean thickness and outcrops beyond the caldera rim, about 10 km NW from Los Humeros (e.g. (Carrasco-Núñez et al., 2017). The characteristic mafic mineral is augite in the shallower horizons and hornblende in the deeper ones (Elders et al., 2014). A liquid-dominant geothermal horizon is exploited between 1025 and 1600 m above sea level, at T =280 -330 °C (Arellano et al., 2003).
- ii) <u>Deep reservoir</u>. It is formed by Mesozoic limestones. Wells encounter its top at 250-1340 m above sea level (Giordano et al., 2017). Fluids are exploited between 800 and 100 m above sea level, at T ranging from 300 to 400 °C (Arellano et al., 2003). This reservoir is separated from the shallower one by a vitreous tuff layer (Arellano et al., 2003).

Evidence gained from well cuttings indicate that both reservoirs are hydrothermally altered.

Main alteration minerals occurring in the shallow reservoir are chlorite, epidote, quartz, calcite, smectite, kaolinite, illite, anhydrite, amphibole, garnet, wairakite, montmorillonite, leucoxene and pyrite (Martínez-Serrano, 2002; Pulido, 2008; Elders et al., 2014; Norini et al., 2015; Giordano et al., 2017) and they are similar to those found in Acoculco geothermal area (López-Hernández et al., 2009; García-Vallés et al., 2015; Canet et al., 2015). Total percentage of alteration minerals can be up to 25-50 wt% (Pulido, 2008).

Typical alteration products of the deep reservoir are skarns with grossular + wollastonite + diopside paragenesis (Martinez Serrano, 2002; Giordano et al., 2017).

Fluids from geothermal wells are sodium- chloride to bicarbonate-sulfated type, have high B contents (>2000 ppm), SiO₂ variable (100-1400 ppm) and are characterized by high ammonia and arsenic contents (Elders et al., 2014). Fluids in wells are characterized by non-condensable gas/steam ratios (in mol) from 0.002 to 0.042; CO₂ is the principal component of non-condensable gas (74 -96 mol%), the other component being H₂ (2.5-20 mol%), CH₄, N₂ and NH₃ (Arellano et al., 2003).

5.2. Methodology

5.2.1 Choice of starting materials and their characterization

5.2.1.1 Solids

We performed fluid rock interaction experiments to simulate reactions occurring in the shallow reservoir. Concurrently, water-rock interaction experiments at conditions of the deep reservoir of the Super-Hot-Geothermal-System (SHGS) of Los Humeros have been planned within Task 6.1.

For our experiments we selected two andesites of Teziutlan lava, thought to be representative of the shallowest portion of the andesitic reservoir. These rock samples (**RUGG04** and **RUGG09**) were collected by G. Norini (CNR), during geological and structural surveys, in an area where the same rocks of the geothermal reservoir crop out. The coordinates of the sampling site are: longitude -97.1685400000 (UTM easting 691998.73), latitude 19.66255900000 (UTM northing 2175173.50). The rocks are aphanitic, holocrystalline, porphyric with plagioclase phenocrystals up to 5 mm.

Whole rock analyses are reported in Table 5.1 and classification diagram (Total Alkali Silica, Le Bas et al., 1986) is shown in Figure 5.1. Rugg04 andesite is more primitive than Rugg09 sample, mainly due to the presence of olivine crystals (see below).

Rock	RUGG04	RUGG09
Contents in	n wt%	
SiO2	55.93	61.26
A12O3	15.52	16.68
Fe2O3(T)	7.89	5.16
MnO	0.13	0.111
MgO	4.21	2.94
CaO	7.16	6.02
Na2O	3.54	3.4
K2O	2.17	2.17
TiO2	1.279	0.59
P2O5	0.33	0.11
LOI	1.59	1.82
Total	99.75	100.3
Contents in	n ppm:	
Sc	22	14
Be	2	1
V	178	122
Ba	508	389
Sr	456	484
Y	26	18
Zr	260	141
Cr	110	40
Co	22	15
Ni	< 20	20
Cu	40	30
Zn	90	70
Ga	19	20
Ge	1	1
As	< 5	< 5
Rb	59	60
Nb	13	4
Mo	< 2	3
Ag	0.6	< 0.5
In	< 0.2	< 0.2
Sn	1	< 1
Sb	< 0.5	< 0.5
Cs	1.4	3.3
La	31.6	15.5
Ce	66.9	33.8
Pr	8.24	4.39
Na Sm	52.9	17.5
Sm En	/.1	4.1
Eu Gd	1.00	1.12
Gu Th	5.8	5.5
	5.4	37
Бу Но	5.4 1	0.7
Fr.	1 2 8	2
ы Тт	2.0 0.42	<u>^</u> 03
Vh	2.6	2.1
In	0.37	0.31
Hf	5.8	3.6
Ta	J.0 1	0.4
W	2	1
TI	<u>0</u> 2	0.2
Ph	10	8
Bi	< 0.4	< 0.4
Th	9.4	4.1
U	2.7	1.6
-		

Table 5.1: Whole rock analyses of rocks selected for experiments. LOI= loss on ignition. Analyses performed by ICP (Actalabs, Canada).

X-ray diffraction spectra only show peaks attributable to plagioclases and clinopyroxenes (Figure 5.2). Spectra were acquired to allow direct comparison between starting material spectra and experimental products ones (also characterized through XRD).

Electron microprobe analyses of **RUGG04** rock (Table 5.2) have shown the presence of plagioclase (labradorite, andesine and oligoclase) together with K-feldspar, clinopyroxenes (augite), orthopyroxene (enstatite), olivine (forsterite 56-65 mol%), oxides (ilmenite-hematite and magnetite-ulvospinel solid solutions), apatite, quartz and rare Fe and Mn rich carbonates (?) around some voids. The presence of clinopyroxenes and the absence of hornblende suggest that the sample can be a proxy of the shallower portion of the andesitic reservoir (e.g. Carrasco-Núñez et al., 2017).

Figure 5.1: Selected rocks for experiments in Total Alkali Silica classification diagram (Le Bas et al., 1986).

RUGG09 sample shown the presence of plagioclase (labradorite, andesine and oligoclase), clinopyroxene (augite), Fe-Ca-Mn-Mg carbonates, quartz, ilmenite, apatite, glass and rare sulphides (Table 5.3). The sample had been selected presuming the presence of amphibole in its paragenesis but electron microprobe analysis failed to reveal this phase. The major presence of carbonate respect to the previous sample denote RUGG09 was greatly exposed to fluid circulation and deuteric alteration.

All rock samples were grinded in an agate mill and the obtained powders sieved. The 50-150 μ m granulometric size interval was selected for the fluid-rock interaction experiments.

Figure 5.2: XRD spectra of selected rocks. Spectra were acquired at Centro di Servizi di Cristallografia Strutturale (C.R.I.S.T.) UNIFI through a Cu anticathode diffractometer.

1 1 3 3 3 5	Sam	ple Rugg04	Rugg	04 Rug	g04 Ri	Jgg04 I	Rugg04	Rugg04	Rugg04	Rugg04	Rugg04	Rugg04	RuggC	4 Rugg04	Rugg0	4 Rugg	g04 Rug	gg04	Rugg04	Rugg04	Rugg04	RuggO	4 Rugg	04 Ruj	igg04	Rugg04	Rugg04	Rugg04	Rugg04	Rugg04	Rugg04	Rugg04	Rugg04	Rugg04	Sample	Rugg04	Rugg04	Rugg04	Rugg04	Rugg04	Rugg04	Rugg04	4	Rugg04 R	Rugg04
m </td <td>Lab</td> <td>el 1</td> <td>12</td> <td>26</td> <td>6</td> <td>28</td> <td>33</td> <td>34</td> <td>39</td> <td>42</td> <td>44</td> <td>45</td> <td>2</td> <td>11</td> <td>17</td> <td>36</td> <td>5 3</td> <td>37</td> <td>3</td> <td>4</td> <td>14</td> <td>15</td> <td>40</td> <td>4</td> <td>41</td> <td>5</td> <td>6</td> <td>10</td> <td>22</td> <td>25</td> <td>35</td> <td>43</td> <td>47</td> <td>48</td> <td>Label</td> <td>8</td> <td>9</td> <td>20</td> <td>21</td> <td>23</td> <td>24</td> <td>29</td> <td></td> <td>18</td> <td>19</td>	Lab	el 1	12	26	6	28	33	34	39	42	44	45	2	11	17	36	5 3	37	3	4	14	15	40	4	41	5	6	10	22	25	35	43	47	48	Label	8	9	20	21	23	24	29		18	19
	Pha	se cpx	срэ	с ср	x	срх	срх	срх	срх	срх	срх	срх	ol	ol	ol	ol	C	l	OX	OX	OX	OX	OX	0	ox	feld	feld	feld	feld	feld	feld	feld	feld	feld	Phase	орх	орх	орх	орх	орх	орх	орх		carb	carb
Name Name Name Name Na	SiO2	50.9	6 5:	1.18 5	0.38	50.02	50.29	49.49	50.43	51.64	4 50.52	2 47.78	8 35.	46 34.00	36.0	09 3	5.68 3	34.66	0.00	0.04	0.06	5 0.:	19 (.07	0.87	61.50	56.18	53.55	57.18	54.76	65.8	54.08	59.38	57.91	SiO2	47.29	51.15	47.61	52.83	45.90	51.6	56 52.°	28	0.00	0.00
NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM <th< td=""><td>TiO2</td><td>0.7</td><td>3 :</td><td>1.01</td><td>1.06</td><td>1.05</td><td>0.88</td><td>1.01</td><td>0.71</td><td>0.83</td><td>3 0.79</td><td>9 1.37</td><td>7 0.</td><td>00 0.07</td><td>7 0.0</td><td>00</td><td>0.05</td><td>0.03</td><td>47.91</td><td>14.74</td><td>47.38</td><td>3 12.4</td><td>19 27</td><td>.34</td><td>16.39</td><td>0.13</td><td>0.07</td><td>0.10</td><td>0.07</td><td>0.11</td><td>0.1</td><td>0.01</td><td>0.11</td><td>0.07</td><td>TiO2</td><td>0.09</td><td>0.11</td><td>0.02</td><td>0.40</td><td>0.06</td><td>0.5</td><td>57 0./</td><td>41</td><td>0.00</td><td>0.02</td></th<>	TiO2	0.7	3 :	1.01	1.06	1.05	0.88	1.01	0.71	0.83	3 0.79	9 1.37	7 0.	00 0.07	7 0.0	00	0.05	0.03	47.91	14.74	47.38	3 12.4	19 27	.34	16.39	0.13	0.07	0.10	0.07	0.11	0.1	0.01	0.11	0.07	TiO2	0.09	0.11	0.02	0.40	0.06	0.5	57 0./	41	0.00	0.02
COM COM COM COM COM	AI2O	2.0	2 :	1.65	1.82	1.77	2.13	2.20	1.16	1.61	1 1.85	5 2.94	4 0.	02 0.04	1 0.0	00	0.02	0.14	0.16	1.41	0.28	3 2.	35 1	.13	11.38	22.78	26.09	27.47	24.74	26.21	18.8	27.35	28.02	27.17	AI2O3	4.89	6.26	4.61	0.87	5.73	0.5	57 0.1	83	0.01	0.05
10 10	Cr2O	0.1	7 (0.03	0.02	0.00	0.08	0.18	0.06	0.04	4 0.00	0 0.16	6 0.	01 0.00	0.0	05	0.04	0.00	0.12	0.42	0.10	0.0	D6 C	.12	0.18	0.00	0.00	0.00	0.00	0.00	0.0	L 0.00	0.00	0.00	Cr2O3	0.00	0.00	0.00	0.01	0.01	. 0.0).0 O.	00	0.00	0.06
NM NM NM NM NM NM NM NM NM NM NM <	FeO	9.7	1 10	0.45 1	0.93	11.07	10.75	10.93	13.72	11.32	2 12.05	5 11.46	6 36.	20 40.45	5 30.	33 3	5.16 3	36.87	47.77	76.94	48.9	7 78.9	94 66	.39	64.31	1.40	1.04	0.53	0.56	0.91	0.3	0.61	0.62	0.88	FeO	24.47	23.90	21.91	19.52	23.07	22.0	.)0 19./	83	1.11	1.41
No. Sol Sol Sol Sol Sol	MnO	0.2	2 (0.30	0.28	0.40	0.48	0.32	0.47	0.39	9 0.40	0.34	4 0.	54 0.75	5 0.1	71	0.59	0.64	0.52	0.43	0.69	9 0.4	47 C	.54	0.35	0.00	0.00	0.00	0.01	0.00	0.0	0.00	0.00	0.00	MnO	0.27	0.27	0.34	0.61	0.27	0.5	58 0.'	59	10.22	10.82
O M M M M M M M M M <	MgO	15.0	7 1	5.02 1	5.32	14.75	14.79	14.70	14.64	15.14	4 15.12	2 14.21	1 27.	89 24.10	31.0	05 2	7.82	26.39	2.01	0.96	1.47	7 0.0	63 C	.56	0.27	0.26	0.13	0.06	0.13	0.04	0.0	5 0.10	0.11	0.09	MgO	11.07	14.89	13.65	23.08	13.35	18.9	37 23./	48	1.16	1.13
NAD Sis Sis <td>CaO</td> <td>18.0</td> <td>2 18</td> <td>8.47 1</td> <td>7.95</td> <td>18.08</td> <td>18.15</td> <td>17.63</td> <td>15.61</td> <td>18.01</td> <td>1 16.84</td> <td>4 17.16</td> <td>6 0.</td> <td>26 0.19</td> <td>) O.:</td> <td>36</td> <td>0.25</td> <td>0.20</td> <td>0.04</td> <td>0.10</td> <td>0.02</td> <td>2 0.:</td> <td>10 C</td> <td>.14</td> <td>0.31</td> <td>5.08</td> <td>9.26</td> <td>10.74</td> <td>8.18</td> <td>9.50</td> <td>1.2</td> <td>9.88</td> <td>9.20</td> <td>9.37</td> <td>CaO</td> <td>1.81</td> <td>1.72</td> <td>1.26</td> <td>1.96</td> <td>2.10</td> <td>5.2</td> <td>27 1.1</td> <td>84</td> <td>48.63</td> <td>48.89</td>	CaO	18.0	2 18	8.47 1	7.95	18.08	18.15	17.63	15.61	18.01	1 16.84	4 17.16	6 0.	26 0.19) O.:	36	0.25	0.20	0.04	0.10	0.02	2 0.:	10 C	.14	0.31	5.08	9.26	10.74	8.18	9.50	1.2	9.88	9.20	9.37	CaO	1.81	1.72	1.26	1.96	2.10	5.2	27 1.1	84	48.63	48.89
0 0 0 0 0 0 0	Na2C	0.3	1 (0.16	0.25	0.18	0.43	0.27	0.25	0.37	7 0.41	1 0.36	6 0.	16 0.02	2 0.0	00	0.12	0.00	0.00	0.00	0.06	5 0.0	00 C	.00	0.00	7.12	5.64	4.68	6.27	5.89	5.6	5.38	5.92	5.81	Na2O	0.30	0.17	0.36	0.05	0.23	0.0	J8 0./	06	0.08	0.00
See See See See See See <	K2O	0.0	3 (0.02	0.00	0.04	0.00	0.00	0.03	0.02	2 0.00	0.01	1 0.	00 0.02	2 0.0	04	0.02	0.00	0.03	0.03	0.03	L 0.0	D3 C	.06	0.02	1.45	0.46	0.57	0.76	0.53	6.7	0.57	0.68	0.49	K2O	0.13	0.09	0.13	0.05	0.23	0.0	J5 0./	00	0.01	0.00
A A A A A A A A A <	Sum	97.2	4 90	8.30 9	8.01	97.37	97.98	96.73	97.07	99.36	6 97.96	6 95.81	1 100.	53 99.62	2 98.	62 9	9.76 9	98.93	98.55	95.06	99.02	2 95.3	25 96	.36	94.10	99.71	98.86	97.71	97.91	97.97	98.9	97.98	104.04	101.79	Sum	90.30	98.55	89.88	99.37	90.95	99.7	/6 99.3	32	61.21	62.39
Cal <td></td> <td></td> <td>-</td> <td></td> <td>_</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td>			-		_											-							_	_																					
Cal Cal Cal Cal Cal <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>Cations</td> <td>per 3 0 (4 0 in</td> <td>n bold). I</td> <td>re2+ and F</td> <td>e3+ based</td> <td>d on char</td> <td>e balan</td> <td>nce. Cations p</td> <td>er 80:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Cations p</td> <td>er 6 0. Fe2+</td> <td>+ and Fe3+ b</td> <td>based on c</td> <td>harge bala</td> <td>nce.</td> <td></td> <td></td> <td></td> <td></td> <td></td>														_				Cations	per 3 0 (4 0 in	n bold). I	re2+ and F	e3+ based	d on char	e balan	nce. Cations p	er 80:									Cations p	er 6 0. Fe2+	+ and Fe3+ b	based on c	harge bala	nce.					
1 1	Catio	ns per 6 O. Fei	2+ and F	e3+ based	on char	qe balanc	ce.						Numbers of ions of	n the basis o	of 4 oxyge	ens.		(Ilmenit	e-hematite s.s.	., magne	tite-ulvos	oinel in ba	ld)		Si	2.759	2.562	2.480	2.627	2.529	2.98	2.494	2.567	2.560	Si	2.037	1.982	2.024	1.963	1.93F	1.95	54 1.9	41		
NAI Orise <	Si	1.94	7 1.	.942 1	.914	1.920	1.911	1.908	1.953	1.938	8 1.923	3 1.863	3 Si 0.9	88 0.981	L 0.9	97 0	.998 (0.988 Si	0.000	0.001	0.002	2 0.0		002	0.021 AI	1.205	1.402	1.499	1.340	1.426	1.00	1.487	1.427	1.416	IVAI	0.000	0.018	0.000	0.037	0.064	0.02	25 0.0	36		
ref <td>IVAI</td> <td>0.05</td> <td>3 0.</td> <td>.058 0</td> <td>.086</td> <td>0.080</td> <td>0.089</td> <td>0.092</td> <td>0.047</td> <td>0.062</td> <td>2 0.077</td> <td>7 0.135</td> <td>5 Fe 0.8</td> <td>44 0.977</td> <td>7 0.7</td> <td>01 0</td> <td>.823 (</td> <td>0.880 AI</td> <td>0.005</td> <td>0.063</td> <td>0.008</td> <td>3 0.1</td> <td>0.</td> <td>034</td> <td>0.328 Fe</td> <td>0.058</td> <td>0.044</td> <td>0.023</td> <td>0.024</td> <td>0.039</td> <td>0.01</td> <td>0.026</td> <td>0.025</td> <td>0.036</td> <td>Fe3+</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.02</td> <td>21 0.0</td> <td>23</td> <td></td> <td></td>	IVAI	0.05	3 0.	.058 0	.086	0.080	0.089	0.092	0.047	0.062	2 0.077	7 0.135	5 Fe 0.8	44 0.977	7 0.7	01 0	.823 (0.880 AI	0.005	0.063	0.008	3 0.1	0.	034	0.328 Fe	0.058	0.044	0.023	0.024	0.039	0.01	0.026	0.025	0.036	Fe3+	0.000	0.000	0.000	0.000	0.000	0.02	21 0.0	23		
Sam 200 200 200 200 200 200 200 200 200 200 200 200	Fe3+	0.00	0 0.	.000 0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	2 Mn 0.0	13 0.018	3 0.0	17 0	.014 (0.016 K	0.001	0.001	0.000	0.0	01 0.	002	0.001 Sum	4.022	4.007	4.002	3.991	3.995	4.00	4.008	4.018	4.012	Sum	2.037	2.000	2.024	2.000	2.000	2.00	JO 2.0'	00		
I I I I I <	Sum	2.00	0 2.	.000 2	.000	2.000	2.000	2.000	2.000	2.000	0 2.000	0 2.000	0 Mg 1.1	59 1.037	1.2	79 1	160 1	1.122 Ti	0.903	0.419	0.893	0.3	53 0.	520	0.302																				
Vial 0.007 0.008 0.008 0.008 0.008 0.008 0.009 0.00 0													Ca 0.0	08 0.006	5 0.0	11 0	.008 0	0.006 Mg	0.075	0.054	0.055	5 0.0	35 0.	021	0.010 Ca	0.244	0.452	0.533	0.403	0.470	0.06	0.488	0.426	0.444	VIAI	0.248	0.268	0.231	0.001	0.220	0.00	JO 0.0'	.00		
Pi-1 OCO OCO OCO OCO OCO	VIAI	0.03	7 0.	.016 -0	0.004	0.000	0.006	0.008	0.006	0.009	9 0.006	6 0.000	0 Sum 2.0	24 2.038	3 2.0	07 2	.004 2	2.024 Cr	0.002	0.013	0.002	2 0.0)2 0.	002	0.004 Na	0.620	0.498	0.420	0.558	0.527	0.49	0.481	0.496	0.498	Fe 3+	0.000	0.000	0.000	0.017	0.000	0.02	20 0.0	41		
1 0	Fe 3+	0.00	0 0.	.000 0	0.048	0.033	0.062	0.040	0.016	0.031	1 0.056	6 0.078	8					Na	0.000	0.000	0.003	3 0.0	0. 0.	000	0.000 K	0.083	0.027	0.034	0.045	0.032	0.38	3 0.034	0.038	0.027	Ti	0.003	0.003	0.001	0.011	0.002	0.01	16 0.0	11		
Meth 0.58 0.88 0.84 <	Ti	0.02	1 0.	.029 0	0.030	0.030	0.025	0.029	0.021	0.023	3 0.023	3 0.040	0 End-members (m	1%)				Mn	0.011	0.014	0.015	5 0.0	15 0.	012	0.007 Sum	0.947	0.977	0.987	1.006	1.029	0.94	5 1.003	0.960	0.969	Mg	0.711	0.729	0.768	0.970	0.777	0.96	54 0.9	48		
c 0.000 <td< td=""><td>Mg</td><td>0.85</td><td>8 0.</td><td>.850 0</td><td>.868</td><td>0.844</td><td>0.838</td><td>0.845</td><td>0.846</td><td>0.847</td><td>7 0.858</td><td>8 0.826</td><td>6 Fo 5</td><td>.9 51.5</td><td>5 64</td><td>.6</td><td>58.5</td><td>56.1 Ca</td><td>0.001</td><td>0.004</td><td>0.00</td><td>L 0.0</td><td>0.</td><td>004</td><td>0.008</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Cr</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.00</td><td>JO 0.0'</td><td>00</td><td></td><td></td></td<>	Mg	0.85	8 0.	.850 0	.868	0.844	0.838	0.845	0.846	0.847	7 0.858	8 0.826	6 Fo 5	.9 51.5	5 64	.6	58.5	56.1 Ca	0.001	0.004	0.00	L 0.0	0.	004	0.008										Cr	0.000	0.000	0.000	0.000	0.000	0.00	JO 0.0'	00		
rel 0.07 0.08 0.08 0.07 0.08 0.07 0.09 0.09 0.00 </td <td>Cr</td> <td>0.00</td> <td>5 0.</td> <td>.001 0</td> <td>0.001</td> <td>0.000</td> <td>0.002</td> <td>0.006</td> <td>0.002</td> <td>0.001</td> <td>1 0.000</td> <td>0.005</td> <td>5 Fa 4.</td> <td>.1 48.5</td> <td>5 35</td> <td>.4</td> <td>41.5</td> <td>43.9 Fe3+</td> <td>0.188</td> <td>1.086</td> <td>0.208</td> <td>3 1.1</td> <td>76 0.</td> <td>923</td> <td>1.022 Sum catio</td> <td>4.969</td> <td>4.985</td> <td>4.989</td> <td>4.996</td> <td>5.023</td> <td>4.95</td> <td>5.010</td> <td>4.978</td> <td>4.982</td> <td>Fe2+</td> <td>0.038</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.00</td> <td>JO 0.0'</td> <td>00</td> <td></td> <td></td>	Cr	0.00	5 0.	.001 0	0.001	0.000	0.002	0.006	0.002	0.001	1 0.000	0.005	5 Fa 4.	.1 48.5	5 35	.4	41.5	43.9 Fe3+	0.188	1.086	0.208	3 1.1	76 0.	923	1.022 Sum catio	4.969	4.985	4.989	4.996	5.023	4.95	5.010	4.978	4.982	Fe2+	0.038	0.000	0.000	0.000	0.000	0.00	JO 0.0'	00		
5 100	Fe2+	0.07	8 0.	.104 0	.058	0.092	0.066	0.072	0.110	0.088	8 0.058	B 0.050	0					Fe2+	0.814	1.346	0.81	/ 1.3	33 0.	481	0.297										Sum	1.000	1.000	1.000	1.000	1.000	1.00	JO 1.0'	00		
Image: Note Note Note Note Note Note Note Note	Sum	1.00	0 1.	.000 1	.000	1.000	1.000	1.000	1.000	1.000	0 1.000	0 1.000	0					Sum	2.000	3.000	2.000	3.0	2.	000	2.000 End-mem	nbers (mol%)																		
Na 0.02 0.03 0.02 0.03 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>An</td><td>25.8</td><td>46.3</td><td>54.0</td><td>40.0</td><td>45.7</td><td>6.0</td><td>6 48.7</td><td>44.4</td><td>45.8</td><td>Na</td><td>0.025</td><td>0.013</td><td>0.029</td><td>0.004</td><td>0.019</td><td>0.00</td><td>J6 0.0"</td><td>.04</td><td></td><td></td></th<>																									An	25.8	46.3	54.0	40.0	45.7	6.0	6 48.7	44.4	45.8	Na	0.025	0.013	0.029	0.004	0.019	0.00	J6 0.0"	.04		
N 0.007 0.013 <th< td=""><td>Na</td><td>0.02</td><td>3 0.</td><td>.012 0</td><td>0.019</td><td>0.013</td><td>0.032</td><td>0.020</td><td>0.018</td><td>0.027</td><td>7 0.030</td><td>0.027</td><td>7</td><td></td><td></td><td></td><td></td><td>FeO</td><td>38.85</td><td>42.61</td><td>39.06</td><td>5 41.</td><td>52 22</td><td>.76</td><td>14.48 Ab</td><td>65.5</td><td>51.0</td><td>42.6</td><td>55.5</td><td>51.2</td><td>52.4</td><td>48.0</td><td>51.7</td><td>51.4</td><td>Mn</td><td>0.010</td><td>0.009</td><td>0.012</td><td>0.019</td><td>0.010</td><td>0.01</td><td>19 0.0</td><td>19</td><td></td><td></td></th<>	Na	0.02	3 0.	.012 0	0.019	0.013	0.032	0.020	0.018	0.027	7 0.030	0.027	7					FeO	38.85	42.61	39.06	5 41.	52 22	.76	14.48 Ab	65.5	51.0	42.6	55.5	51.2	52.4	48.0	51.7	51.4	Mn	0.010	0.009	0.012	0.019	0.010	0.01	19 0.0	19		
A 0.73 </td <td>Mn</td> <td>0.00</td> <td>7 0.</td> <td>.010 0</td> <td>.009</td> <td>0.013</td> <td>0.015</td> <td>0.010</td> <td>0.015</td> <td>0.012</td> <td>2 0.013</td> <td>3 0.011</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>Fe2O3</td> <td>9.91</td> <td>38.15</td> <td>11.02</td> <td>2 41.</td> <td>59 48</td> <td>.48</td> <td>55.38 Or</td> <td>8.8</td> <td>2.7</td> <td>3.4</td> <td>4.4</td> <td>3.1</td> <td>41.0</td> <td>3.4</td> <td>3.9</td> <td>2.8</td> <td>Ca</td> <td>0.084</td> <td>0.071</td> <td>0.057</td> <td>0.078</td> <td>0.095</td> <td>0.21</td> <td>14 0.0</td> <td>73</td> <td></td> <td></td>	Mn	0.00	7 0.	.010 0	.009	0.013	0.015	0.010	0.015	0.012	2 0.013	3 0.011	1					Fe2O3	9.91	38.15	11.02	2 41.	59 48	.48	55.38 Or	8.8	2.7	3.4	4.4	3.1	41.0	3.4	3.9	2.8	Ca	0.084	0.071	0.057	0.078	0.095	0.21	14 0.0	73		
Feld 0.22 0.22 0.22 0.23 0.24 <	Ca	0.73	7 0.	.751 0	0.731	0.743	0.739	0.728	0.648	0.724	4 0.687	7 0.717	7					FeO*	47.77	76.93	48.9	7 78.9	94 66	.39	64.31										Fe2+	0.845	0.775	0.780	0.590	0.814	0.65	6 0.5	53		
h h	Fe2+	0.23	2 0.	.228 0	.242	0.230	0.214	0.241	0.319	0.23	7 0.271	1 0.244	4													oligoclase	andesine	labradorite	andesine	andesine	K-feldspar	andesine	andesine	andesine	Mg	0.000	0.132	0.097	0.309	0.063	0.10	J6 0.3'	52		
Sum 1.00 <	Mg	0.00	0 0.	.000 0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0					Sum	99.54	98.88	100.13	3 99 .4	101	.22	99.65										Sum	0.963	1.000	0.976	1.000	1.000	1.00	JO 1.0'	00		
Image: Serie	Sum	1.00	0 1.	.000 1	.000	1.000	1.000	1.000	1.000	1.000	0 1.000	0 1.000	0																																
Sum at 0 4.00																																			Sum catio	4.000	4.000	4.000	4.000	4.000	4.00	JO 4.0	00		
Edd Edd Edd F </td <td>Sum</td> <td>atio 4.00</td> <td>0 4.</td> <td>.000 4</td> <td>.000</td> <td>4.000</td> <td>4.000</td> <td>4.000</td> <td>4.000</td> <td>4.000</td> <td>0 4.000</td> <td>0 4.000</td> <td>0</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td>Fnd-mem</td> <td>nhers (mol%</td> <td><)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Sum	atio 4.00	0 4.	.000 4	.000	4.000	4.000	4.000	4.000	4.000	0 4.000	0 4.000	0			-							_	_											Fnd-mem	nhers (mol%	<)								
Wo 385 386 37.4 38.0 38.2 37.6 33.2 37.3 35.4 37.2 9 <	End-	nembers (mol	%)													-																			Wo	5.0	4.2	3.4	3.9	5.4	10.	.7 3	3.6		
En 44.9 43.8 44.4 43.2 43.3 43.7 44.2 42.8 43.8 43.7 44.2 42.8 43.8 43.7 44.2 42.8 43.8 43.7 44.7 42.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 42.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 44.8 43.8 43.8 43.7 44.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 44.8 43.8 43.7 44.7 44.8 43.8 43.8 43.7 44.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8 <	Wo	38.	5	38.6	37.4	38.0	38.2	37.6	33.2	37.3	3 35.4	4 37.2	2																						En	42.1	50.1	50.5	64.5	47.8	53.	.5 64	1.7		
Fs 16 17.4 71.4 <th< td=""><td>En</td><td>44.</td><td>9 4</td><td>43.8</td><td>44.4</td><td>43.2</td><td>43.3</td><td>43.6</td><td>43.3</td><td>43.7</td><td>7 44.2</td><td>2 42.8</td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Fs</td><td>52.9</td><td>45.7</td><td>46.2</td><td>31.6</td><td>46.8</td><td>35.</td><td>.8 31</td><td>1.6</td><td></td><td></td></th<>	En	44.	9 4	43.8	44.4	43.2	43.3	43.6	43.3	43.7	7 44.2	2 42.8	8																						Fs	52.9	45.7	46.2	31.6	46.8	35.	.8 31	1.6		
Meg# 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.5 7.3 7.8 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.5 7.3 7.8 7.4	Fs	16.	6	17.6	18.2	18.9	18.5	18.8	23.6	19.0	0 20.4	4 20.0	0																													-			
Mg# 71.4 71.4 71.4 72.4 72.0 73.0 66.4 72.3 72.3 73.8 0 FeO 9.71 10.45 9.41 10.44 841 9.70 13.22 10.33 10.30 9.01 FeO3 0.00 0.00 0.66 1.52 2.3 7.3																																			Mg#	44.6	52.6	52.6	68.4	50.8	62.	.0 70	J.2		
FeO 9.71 10.45 9.41 10.04 8.81 9.70 13.22 10.33 10.30 9.01 FeO 9.71 10.45 9.41 10.04 8.81 9.70 13.22 10.33 10.30 9.01 FeO3 0.00 0.01 168 115 2.16 1.37 0.55 1.10 1.94 2.73	Mg #	73.	4	71.9	74.4	72.4	75.0	73.0	66.4	72.3	3 72.3	3 73.8	8										1												FeO	24.5	23.9	21.9	19.0	23.1	20.	7 17	/.8		
Fe203 0.00 0.00 1.68 1.15 2.16 1.37 0.55 1.10 1.94 2.73	FeO	9.7	1 10	0.45	9.41	10.04	8.81	9.70	13.22	10.33	3 10.30	0 9.01	1										1												Fe2O3	0.0	0.0	0.0	0.6	0.0	1	.4 2	2.3		
	Fe2O	3 0.0	0 0	0.00	1.68	1.15	2.16	1.37	0.55	1.10	0 1.94	4 2.73	3										1																			-			

Table 5.2: Electron microprobe analyses of Rugg04 sample. Analyses acquired through a Jeol JXA-8600 (beam at 15 kV and 10 nA) at CNR-IGG, Firenze.

Sample	Rugg09	Rugg09	Rugg09	Rugg09	Rugg09	Rugg09	Rugg09		Rugg09	Rugg09	Rugg09	Rugg09	Rugg09	Rugg09	Rugg09	Rugg09	Sample	Rugg09	Rugg09	Rugg09	Rugg09	Rugg09	Rugg09	Rugg09	Rugg09	RuggO	9	Rugg09	Rugg09
Label	1	9	23	35	2	3	13		4	6	18	21	34	5	22	31	Label	8	10	11	30	33	25	29	24	36		26	32
Phase	carb	carb	carb	carb	clay?	clay?	clay?		feld	feld	feld	feld	feld	glass	glass	glass	Phase	срх	срх	срх	срх	срх	орх	орх	quartz	quartz	z	ilm	ilm
													?	0	0	0										1			
SiO2	0.57	0.32	0.00	0.02	79.82	75.22	80.74		50.14	56.55	52.65	49.55	62.73	74.07	75.13	72.34	SiO2	53.49	53.0	5 52.07	53.31	53.47	55.69	56.80	101.99	101.	36	1.38	1.68
TiO2	0.00	0.06	0.07	0.00	0.06	0.10	0.18		0.03	0.00	0.00	0.00	0.25	0.89	0.81	0.62	TiO2	0.20	0.2	9 0.55	0.49	0.56	0.29	0.20	0.07	0.	05	19.54	14.55
AI2O3	0.09	0.05	0.06	0.17	3.87	5.77	5.11		30.69	28.23	30.66	28.20	22.96	11.27	12.10	15.87	AI2O3	1.62	2.4	3.06	1.94	1.72	1.68	0.71	1.13	1.0	03	1.75	3.32
Cr2O3	0.10	0.00	0.05	0.01	0.00	0.00	0.00		0.00	0.00	0.03	0.03	0.00	0.00	0.01	0.00	Cr2O3	0.20	0.0	9 0.06	0.00	0.03	0.00	0.00	0.00	0.	00	0.12	0.28
FeO	47.34	48.97	47.11	50.22	3.06	3.90	5.08		0.61	0.94	0.68	3.26	0.77	1.62	1.50	1.63	FeO	5.30	6.4	2 8.66	10.73	9.72	16.56	16.10	0.81	0.	48	67.87	70.66
MnO	1.93	1.92	3.19	6.52	0.03	0.04	0.00		0.04	0.00	0.00	0.20	0.00	0.00	0.04	0.02	MnO	0.05	0.1	4 0.16	0.18	0.25	0.44	0.40	0.00) 0.	05	0.32	0.26
MgO	4.68	4.07	0.89	1.81	1.32	1.48	0.84		0.09	0.04	0.03	0.41	0.09	0.10	0.09	0.08	MgO	17.69	17.1	5 15.85	15.12	15.55	27.73	27.95	0.02	2 0.	02	1.08	1.81
CaO	4.42	4.56	8.51	1.95	1.25	1.78	1.39		14.16	10.43	13.02	12.01	6.15	0.58	0.45	2.11	CaO	21.12	20.9	4 20.30	19.43	20.35	1.40	1.64	0.04	i 0.	05	0.10	0.13
Na2O	0.18	0.31	0.11	0.35	0.04	0.20	0.13		3.53	6.33	4.93	4.57	7.48	0.99	2.06	4.69	Na2O	0.12	0.2	0.51	0.56	0.32	0.08	0.04	0.85	3 0.	42	0.02	0.33
K20	0.06	0.00	0.00	0.00	0.21	0.25	0.38		0.09	0.37	0.13	0.23	1.16	5.30	5.50	3.71	K20	0.00	0.0	0.02	0.06	0.00	0.00	0.02	0.00	0.	03	0.03	0.03
Sum	59.38	60.25	59.98	61.06	89.64	88.73	93.86		99.39	102.89	102.12	98.46	101.59	94.82	97.70	101.09	Sum	99.78	100.6	9 101.24	101.82	101.99	103.87	103.87	104.94	103	52	92.22	93.04
															There is Cl												-		
															merenser														
																	Cations n	er 6 0 Fe2+	and Fe3-	hased on c	harae halai	nce Cations ner	60 Fe2+	and Fe3+1	ased on charae hal	ance	Cations ne	er 3 () Fe2+ (and Fe3+ based on charge balance
SiO2	0.57	0.32	0	0.02				Cations ne	r 8 0'								Si	1 955	1 92	1 895	1 947	1 946 Si	1 935	1 974	asea on enarge san	arree.	(Ilmenite-	hematite s s	
FeCO3	76.33	78.97	75.97	80.99				si	2 306	2 489	2 351	2 325	2 764				IV/AI	0.045	0.07	0 105	0.053	0.054 IVAL	0.065	0.026			Si	0.036	0.042
MnCO2	2 12	2 1	5 17	10.57				AI	1 664	1 /65	1 612	1 560	1 102				Eo2+	0.000	0.00	0.000	0.000	0.000 Ee.2+	0.000	0.020			AI	0.054	0.098
MaCO3	0.79	9.52	1.95	3.79				Eo	0.026	0.020	0.029	0.142	0.022				Sum	2,000	2.00	2 000	2,000	2,000 Sum	2,000	2,000			ĸ	0.004	0.001
CaCO3	7 17	7 15	14.92	2 22				sumT	3 005	3 003	3 0020	4 027	3 097	-			Jum	2.000	2.00	2.000	2.000	2.000 50111	2.000	2.000			Ti	0.001	0.275
Na2Ca*2	2.04	/.13	1 76	2.55 E.64				Sum	3.355	3.335	3.355	4.027	5.567				VIAL	0.025	0.02	1 0.027	0.020	0.020 VIAL	0.002	0.002			Ma	0.042	0.059
Na2Ca 2	2.54	4.52	1.70	0.06				6	0.609	0.402	0.622	0.604	0.200				Fo 2	0.025	0.03	0.027	0.030	0.020 VIAI	0.005	0.005			Cr	0.042	0.006
KZCd Z	100.72	102.07	00.59	102.28				No	0.056	0.452	0.025	0.004	0.290				Ti Ti	0.012	0.05	0.002	0.050	0.020 FE 34	0.032	0.010			No	0.003	0.006
Sum OX /6	100.75	102.97	33.30	105.56				INd V	0.005	0.001	0.420	0.415	0.055				11 A47	0.003	0.00	0.013	0.015	0.013 11	0.008	0.005			Mo	0.001	0.016
c:	0.011	0.000	0	0				N	1.010	1.052	1.057	1.022	0.003				ivig Cr	0.932	0.92	0.000	0.025	0.001 C-	0.950	0.970			(VIII	0.007	0.000
51	0.011	0.006	0 749	0 707				sum	1.018	1.055	1.057	1.033	0.994				Cr 5021	0.000	0.00	0.002	0.000	0.001 Cr	0.000	0.000			Ca Eo2	1 112	1 270
rez+	0.729	0.752	0.748	0.197				cum cotiou	E 014	E OAE	E 040	E 060	4.091				Fe2+	1.000	1.00	0.014	1.000	1.000 Sum	1.000	1.000			Fe3+	0.261	0.206
Ma	0.05	0.05	0.031	0.103				sum cation	5.014	5.045	3.049	5.000	4.501				Sum	1.000	1.00	1.000	1.000	1.000 50111	1.000	1.000			Fe27	2,000	2,000
IVIB	0.120	0.112	0.025	0.031				Ford month	(10/								N-	0.000	0.01	0.000	0.020	0.022 No	0.000	0.000			Sum	2.000	2.000
Ca	0.087	0.09	0.1/3	0.04				Ena-memb	co r	AC 7	50.0	50.5	20.2				Nd Nd	0.009	0.01	4 0.036	0.039	0.023 Na	0.006	0.003			5-0	10.04	0.02
Nd V	0.007	0.011	0.004	0.013				All	20.0	40.7	58.9	58.5	29.2				IVIII Ca	0.001	0.00	+ 0.005	0.006	0.008 IVIN	0.013	0.012			Fe2O2	10.04	5.02
N Contra	0.002	0	1 000	1.000				AD	30.9	51.5	40.3	40.2	04.3				Ca	0.827	0.81	0.792	0.760	0.793 Ca	0.052	0.452			Fe2O3	50.93	87.61
Sum Cat#	0.993	1	1.002	1.006				Or	0.5	2.0	0.7	1.5	0.0				Fe2+	0.151	0.10	0.167	0.195	0.176 Fe2+	0.429	0.452			FeO	67.87	70.65
Durature! 11			0.0	0.0													Mg	0.012	0.00	0.000	0.000	0.000 Mg	0.500	0.472		-	C	07.02	00.01
Buetschil	0.2	0.0	0.0	0.0				-	abradorite	andesine	iabradorite	abradorite d	nigociase	-			Sum	1.000	1.00	J 1.000	1.000	1.000 Sum	1.000	1.000		-	sum	97.92	33'91
citerite	0.7	1.1	0.4	1.5										-			Cum II	4.000	4.00	4.000	4.000	4.000 (4.000	4.000		-			
Knodochr	3.0	3.0	5.1	10.5													Sum catio	4.000	4.00	J 4.000	4.000	4.000 Sum catio	4.000	4.000					
Magnesit	ε 12.8	11.2	2.5	5.1																									
Siderite	72.9	75.2	74.8	79.7													End-mem	bers (mol%	5)			End-memb	ers (mol%	5)					
Calcite	7.9	7.9	16.9	2.7													Wo	42.3	41.	9 41.2	39.6	40.9 Wo	2.6	3.1					
																	En	49.3	47.	8 44.8	42.9	43.5 En	72.4	72.8					
																	Fs	8.4	10.	3 14.0	17.4	15.7 Fs	24.9	24.1					
																	Mg #	86.5	85.	3 82.6	73.8	75.7 Mg #	77.0	76.2					
																	FeO	4.9	5.	3 6.0	9.6	8.9 FeO	14.8	15.5					
																	Fe2O3	0.4	1.	3 3.0	1.3	0.9 Fe2O3	2.0	0.6					

Table 5.3: Electron microprobe analyses of Rugg09 sample. Analyses acquired through a Jeol JXA-8600 (beam at 15 kV and 10 nA) at CNR-IGG, Firenze.

5.2.1.2 Liquids

The fluid selected for the experiments (**LH35**) comes from a cold spring in the area of the Cofre de Perote, which is the highest volcano in the Eastern area of Los Humeros geothermal field, and it is mainly composed by andesites and trachyandesites (Carrasco-Núñez et al., 2017). The fluid was sampled by M. Lelli at 3020 meters above the sea level in the site with latitude UTM easting 689961 and northing 2160999 coordinates. The fluid is bicarbonate-rich and it has low conductivity (~84 μ S*cm⁻¹), indicating a very low mineralization. It is thus assumed that fluid with such composition infiltrate in the volcanic rocks of Cofre de Perote and interact with the andesitic rocks of the reservoir. In many cases, before starting the experiments an aliquot of this water was put in a bubbler under nitrogen flow for ~ 1 day in order to strip air from it in an effort to prevent oxidation of any Fe(II) released from minerals, which could trigger Fe(III) oxide precipitation over their surfaces.

With the refinement of the geochemical modelling of LHGF it has been hypothesized that recharge of the geothermal field is mainly west-driven. As a consequence, a liquid (**LH3**) was sampled from a well at UTM easting 647263 and northing 2165018 coordinates and it was utilized in an experiment. Analyses show that this liquid has a greater total dissolved solids respect to LH35 (Table 5.4). In particular, Ca^{2+} , Na^+ , HCO_3^- and NO_3^- , SO_4^{2-} are more abundant in LH3 than in LH35, as a consequence of fluid interaction with carbonatic rocks during percolation in geothermal reservoir.

5.2.1.3 Gas

Geothermal fluids contain gas whose main components are CO₂ (predominant), H₂S, H₂, N₂, Cl, F (e.g. Arellano et al, 2003). These gases can be responsible of the formation of low pH fluids induced by the exploitation of geothermal fluids. In fact, in their way to the surface they can react with aqueous fluids, producing aqueous corrosive species (Gutiérrez-Negrín & Izquierdo-Montalvo, 2010). It is thus crucial to take into account the role of gas in the experiments and we choose to impose a CO₂ overpressure. Data from gas stripped from fluids in the wells (Arellano et al., 2003) indicate that 5 bar CO₂ overpressure is a realistic value. We therefore decided to apply this overpressure after stripping out air from the micro-reactor and before starting to increase T.

Sample	LH35	LH3
Type	Cold Spring	Well
X (m)	689961	647263
Y (m)	2160999	2165018
Alt. (m.a.s.l.)	3020	2416
Depth (m)	-	95
T (°C)	11.9	20.2
pH	6.44	7.8
O2 diss. (mg/L)	6.6	-
$E.C.(\mu S/cm)$	84.1	610
Analvses in mg/	1:	
Cl	1.56	31.7
В	< 0.05	0.03
HCO3	54.29	138
SO4	3.8	26
Na	7.02	39.3
K	4.06	5.2
Ca	7.16	78.5
Mg	3.53	9.07
F	<0.1	0.27
NO3	3.25	183
Analyses in meq	/1:	
HCO₃ ⁻	0.89	2.26
F-	0.00	0.00
C1-	0.04	0.89
NO₃⁻	0.05	2.95
SO42-	0.08	0.54
Ca ²⁺	0.36	3.92
Mg ²⁺	0.29	0.75
Na ⁺	0.31	1.71
K^+	0.1038	0.1330
Sum cations	1.06	6.51
Sum anions	1.07	6.65
Eror	-0.40%	-1.09%

Table 5.4: Analyses of fluids utilized in the experiments. Fluids were sampled and analyzed by M. Lelli.

5.2.2 The micro-reactor and P-T conditions

Fluid-rock interaction experiments were performed in a T316 stainless steel micro-reactor (Parr Instrument Company, Mod. 5500, Figure 5.3). The instrument has a 25 ml capacity and it is equipped with a magnetic drive that allows the solid and the fluid to be mixed continuously. Furthermore, a gas inlet valve permits to charge gas into the vessel while gas and liquid sampling valves allows fluids to be sampled during the experiment (*in situ* sampling). The vessel is rated for a maximum working pressure of 200 bar. The maximum operating temperature is dependent upon the seal selected; if PTFE gasket are used, as in our case, it can reach 350 °C. The micro-reactor can be filled up to 2/3 of the volume, higher degrees of filling can produce over-pressures, which can potentially produce failure of the experiment. It was then decided to let react **1 g of rock with 16 ml of liquid**. The solid/liquid ratio (~0.0625 in wt%) was low in order to maximize reactions in solid phases.

Following considerations in the previous paragraph, in most of the experiments we applied **CO**₂ **overpressure (5 bar)** after stripping out air from the micro-reactor and before starting to increase T.

Figure 5.3: Image of the Mod. 5500 Parr micro-reactor used in the experiments (left). Enlargement of the reactor showing valves, magnetic drive and pressure gauge (right).

Three experiments were planned at the following T: **200**, **250** and **300** °C. Considering the liquid + vapor curve of the water, related pressure values should be ~16, 40 and 86 bar (Wagner & Pruss, 1995). Nevertheless, CO₂ overpressure must be taken into account, even if some of this gas is being dissolved in the liquid phase. Actual recorded values were 20 (at 200 °C), 44 (250 °C) and 88 (300 °C) bar. Actual run duration of experiments varied from 191 to 379 hours. Before ending each experiment liquid was sampled *in situ* through the liquid valve. Care was taken to keep the collecting flask as cool as possible in order to minimize steam loss.

Nonetheless, a variable amount of 35-75 wt% of the charged liquid (16 ml) was consistently lost during sampling. After liquid sampling the micro-reactor was cooled, switching off the electric power and ventilating it. After ~ 2 hours, the vessel attained near-room T and solid could be removed and collected. Encrustations usually formed on the micro-reactor walls and they had to be mechanically removed with a spatula; after that, the vessel was washed with a dilute HCl solution in an ultrasonic bath.

5.2.3 Analyses of experimental products

Sampled liquids were filtered (filter with pore size= 0,45 µm) and analyzed through liquid chromatography utilizing Metrohm 761 Compact IC and Metrohm 861 Advanced Compact IC instruments at Dipartimento di Scienze della Terra, Università degli Studi di Firenze. The analyzed species were Cl⁻, HCO₃⁻, SO₄²⁻, F⁻, Br⁻, NO₃⁻, NH₄⁺, Na⁺, K⁺, Ca²⁺, Mg²⁺, Sr²⁺ and Li⁺. In few cases, solids entrapped in filters were recovered and analyzed through SEM (see below). Solids run products were characterized by XRD on a Philips PW 1050/37 powder diffractometer, operating with a Cu anode, a graphite monochromator and with a PANalytical X'Pert PRO data acquiring system (Dipartimento di Scienze della Terra, Università degli Studi di Firenze). Spectra were also acquired at Centro di Cristallografia Strutturale (CRIST) of the University of Firenze (Bruker New D8 Da Vinci instrument, Theta-Theta goniometer, CuKa radiation, 40kV x 40mA conditions, 20 from 5° to 70°, step scan 0.020°, time per step 57.6 s) in order to get spectra with reduced noise background. In some cases, solid products were mounted on stubs for observation in a Scanning Electron Microscope (SEM) ZEISS EVO MA15 equipped with EDS microanalyses OXFORD INCA 250 (MEMA, Centro di Servizi di Microscopia Elettronica e Microanalisi - Università degli Studi di Firenze). Microanalyses results are only qualitative since samples were not embedded in epoxy resin and polished, but they were simply put on a carbon adhesive stub and C coated for microscope observation.

5.3 Results

Experimental details are reported in Table 5.5. Summing up, we arbitrarily chose to fix solid/liquid ratio and we varied the following parameters:

- Solid (Rugg04, Rugg09);
- Liquid (LH35, LH3);
- T (200, 250, 300°C);
- P_{CO2} at the beginning of the experiment (0, 5 bar)
- De-airing procedure with N₂ flow before starting the experiment (yes, no)
- Run duration (from 191 to 379 hours).

Results are reported in the following paragraphs, considering the solid used in the experiments.

Experiment	139	142	154	168	143	147	146	167	149
Solid (type)	Rugg04	Rugg04	Rugg04	Rugg04	Rugg04	Rugg09	Rugg09	Rugg09	Rugg09
Fluid (type)	LH35	LH35	LH35	LH3	LH35	LH35	LH35	LH35	LH35
T(°C)	200	250	250	250	300	200	250	250	300
Initial PCO2	5	5	0	5	5	5	5	0	5
De-air	YES	NO	YES						
P (bar)	20	44	41	41	88	21	38	41	90
Duration (h)	262	263	379	263	191	239	307	308	258

Table 5.5: Details of fluid-rock stirred experiments. In all the experiments 1 g of solid and 16 ml of fluid were utilized.

5.3.1 Experiments using the more primitive andesite (Rugg04)

At the end of the experiments extensive encrustations around micro-reactor walls were often observed. They are whitish – ochre in color (Figure 3.4) and their mechanical removal proved to be tricky.

Figure 5.4: Images of the whitish –ochre encrustations on the walls and at the bottom of the micro-reactor. The internal diameter is about 2.5 cm. The images refer to Experiment 142.

XRD spectra of run products are reported in Figure 5.5. In this Figure, spectrum of encrustation formed in Experiment 139 (T=200 °C) is also reported. Unfortunately, starting material have numerous peaks, attributable mainly to plagioclases; this makes difficult the detection of new phases possibly formed during experiments. Nevertheless, some new peaks not existing in the starting material can be evidenced (Figure 5.5). They are attributed to quartz (SiO₂), boehmite (AlO(OH)), possibly kaolinite $(Al_2Si_2O_5(OH)_4)$ (or phillipsite, see below) and calcite (CaCO₃). Quartz is particularly abundant in the encrustations grown on reactor walls. The finding of quartz and boehmite occurs in the whole range of the investigated temperatures, even if peaks intensities for these phases are higher for experimental products obtained at 200°C (Figure 5.5). The presence of kaolinite could be revealed by the presence of its most intense peak at ~12.5° 2θ CuKa. This phase can be stable up to 260-270 °C under P conditions such as those of the experiments (Hurst & Kunkle, 1985), even if its stability is lowered at T< 250 °C in presence of quartz (Matsuda et al., 1992). Alternatively, this peak could be attributed to phillipsite ((Ca,K,Na)₁₋₂(Si,Al)₈O₁₆•6H₂O), a common zeolite found in volcanic rocks. This phase has three intense peaks, two of them at ~12.4° CuK α , and the other at ~27.8° CuK α which could be masked by the most intense peaks pertaining to plagioclases. Anyway, it should be remembered that, as a rule of the thumb, powder XRD can evidence the presence of phases more abundant than ~5 wt%; thus, this technique cannot reveal the presence of newly formed phases if they are present in small amounts among the experimental products.

Figure 5.5: XRD spectra of **Rugg04** starting material and experimental products of experiments 139 (**200**°C), 142 (**250**°C), 143 (**300**°C). For sake of clarity spectrum the spectrum relative of the encrustation (encrust.) is reported only for experiment 139. Peaks attributed to K (=kaolinite), Q (=quartz), B (=boehmite), C (= calcite) are shown.

SEM observations and microanalyses (albeit qualitative), besides highlighting the presence of quartz crusts, allowed to evidence the presence of an Al-rich phase, compatible with boehmite and a Si, Al, K, Fe, Mg –bearing phase, compatible with illite, not evidenced by XRD, probably because of its paucity in experimental products, (Figure 5.6).

Quartz, boehmite and possibly kaolinite (or phillipsite?) are found also in the experiment run without charging the reactor with an initial P_{CO2} (Figure 5.7). Moreover, SEM observations on encrustations of experiment 154 evidenced the presence of tiny Na-Si rich crystals on the quartzitic matrix (Figure 5.6d).

Figure 5.6: BSE images of representative area of experimental products. Red dots indicate: a) Angular quartz fragment (exp. 139), b) Al-rich (Al2O3~73 wt%) rounded phase (boehmite?, exp.139),
c) Al-Si-K-rich phase (SiO2~66 wt%, Al2O3~15wt%, K2O~10 wt%, FeO~3-5 wt%, MgO~1 wt% illite?, exp. 139),
d) solids in crusts of exp. 154. Phases indicated by labels are Na2O (40-58 wt%) and SiO2 (31-44 wt%)-rich.

XRD spectrum of experimental product obtained in run performed with LH3 fluid sample confirm the presence of peaks attributable to quartz and, possibly, to wairakite (CaAl₂Si₄O₁₂•2H₂O) beside the lack of boehmite's peaks (Figure 5.8). In fact, the two most intense peaks of wairakite (at 2theta of 26.11° and 15.95° for Cu Kalpha) are clearly visible in the XRD spectrum of products of experiment 168 (Figure 5.8), the less intense peaks being likely hidden by the numerous plagioclase peaks.

Analyses of fluids sampled in situ just before ending the experiments are reported in Table 5.6. HCO_3^- is the most abundant anion and NH₄ is almost always the most abundant cation. Nevertheless, values associated to this analyte should be treated with caution since a NH₄ contamination was found to occur during sampling. Some "blank" experiments at 200°C with only deionised water still resulted to yield a fluid with NH₄ contamination (1-4.5 mg/l). We presume contamination should come from reactor's walls but efforts to reduce it as much as possible by means of iterated "washing runs" failed. It has to be considered that NH₄ caused by NO₃ reduction could contribute only by ~ 1.3 mg/l. It should be highlighted the low cations contents of elements such as Na and Ca, potentially released by plagioclase dissolution of the starting material. Anyway, beside the critical issues in the sampling procedure (see paragraph

5.2.2), phases precipitation occurred during sampling since Na₂O-Al₂O₃-rich solid phases were found in the filters used to inject sampled fluids into chromatograph (Figure 3.9).

Figure 5.7: XRD spectra of **Rugg04** starting material and experimental products of run 142 (**250°C**, with initial **PCO2=5 bar**), 154 (**250°C**, initial $P_{CO2}=0$). Meaning of the letters as in Figure 3.5.

Figure 5.8: XRD spectra of **Rugg04** starting material and experimental products of run 142 (**250°C**, **liquid=LH35**), 154 (**250°C**, **liquid=LH3**). Meaning of the letters as in Figure 3.5, W= wairakite.

Experiment	LH35	139	142	154	168	143	147	146	167	149
Rock			Ru	ıgg04				Rug	gg09	
T(°C)		200	250	250	250	300	200	250	250	300
Contents (mg/l);										
Contents (mg/1).		1.75								
Cl	1.95	1.75	1.7	1.99	4.7	1.4	1.00		0.6	1.60
NH4	0.05	16.5	7.3	6.3	39.0	5.9	25	16	8.1	16
HCO3	65	384.3	80	366	165	326	132		61	61
SO4	4.80	4.06	8.7	3.34	3.2	3.3	2.20		1.7	2.90
Na	7.5	4.94	6.2	1.4	4.0	1.6	2.3	1.8	3.2	1.4
К	4.3	1.99	3.1	0.7	1.5	0.8	1.2	3.3	1.5	0.7
Са	8.7	9.04	10	7.7	8.4	13	2.7	12	2.9	5.2
Mg	4.00	0.25	1.6	0.33	1.60	0.4	0.26	14	0.29	0.38
F	0.32	0.61	0.33				0.80			
Br			0.01	0.008						0.007
NO3	4.50	0.35	0.6	0.80	0.57	0.1	0.26		0.01	0.67
Li							0.013			
Sum cations (meq/l)	1.20	1.65	1.40	0.84	2.93	1.12	1.67		0.80	1.26
Sum anions (meq/l)	1.31	6.47	1.57	6.14	2.91	5.45	2.28		1.05	1.12
Error (%)	-4.34	-59.30	-5.52	-75.83	0.26	-65.98	-15.39		-13.90	5.93

Table 5.6: Analyses of fluids sampled in situ, just before ending the experiment. In Experiment 146 fluid was sampled in a flask in which an acidified solution was added to analyze cations only. Note that a NH4 contamination occurs during sampling, since this analyte was found to be in the 1 cidifibly, range, even in de-ionized water experiments run without solid at $T=200^{\circ}C$.

Figure 5.9: SE image of solids entrapped in filters utilized to inject liquid into LC. Qualitative EDS analyses on the red points gave Na2O= 67-70wt%, Al2O3=20-22 wt%, SiO2= 2-4 wt%, K2O= 3-10 wt%). The image refers to Experiment 147, but similar products were found in filters relative to runs performed using Rugg04 andesite.

5.3.2 Experiments using less primitive andesite (Rugg09)

XRD spectra show the crystallization of quartz and boehmite during these experiments (Figure 3.10). Furthermore, a peak attributable to kaolinite or phillipsite (at Cu K α 2 θ ~ 12.5°) suggests the presence of this phase among experimental products, as in experiments run with Rugg04 starting material. In addition, magnesite (MgCO₃) is possibly detected in run executed at 250 °C, since the most intense peak of this phase is clearly visible at ~ Cu K α 2 θ ~ 32.6°. Similar results were found also for the experiment run without imposing an initial P_{CO2} (Figure 5.10). Encrustations stuck in reactor's walls are mainly formed by quartz, since peaks of this phase are the most intense in correspondent XRD spectra (Figure 5.11). SEM investigation lead to results similar to those obtained for experiments run using Rugg04 andesite. More detailed SEM-EDS investigations on encrustations formed in experiment 167 evidenced the presence of a Si-Na-rich phase with a mammillary appearance and bundles of Na-rich tiny crystals (Figure 5.12). The former resemble zeolites but the absence of Al in EDS analyses suggest they are not. Tiny crystals could be natrite (Na₂CO₃) and their acicular aspect (Figure 5.12) suggests they crystallised during experiment termination.

Figure 5.10: XRD spectra of **Rugg09** starting material and experimental products of experiments 147 (**200°C**), 146 (**250°C**), 167 (**250°C**, **initial PCO2=0**), 149 (**300°C**). Peaks attributed to K? (=kaolinite), Q (=quartz), B (=boehmite), M? (= magnesite) are shown.

Solids filtered from liquid before injection to chromatograph resulted to have $SiO_2 = 17-26$ wt%, $Al_2O_3 = 47-68$ wt%, FeO= 7-15 wt%, MgO= 3-4 wt%, K_2O~ 1 wt% (EDS analyses, Figure 5.13). The analyses do not identify a single mineralogical phase, but they possibly represent "cumulative" analyses, comprising neo-formed Al-rich phases, such as boehmite.

Analyses of sampled liquids are not quite different from analyses just reported for other experiments (Table 5.6), the main cations being HCO_3^- and NH_4^+ .

Figure 5.11: XRD spectra of **Rugg09** starting material and experimental products of experiments 146 (**250**°C) and **encrustations** formed. Meaning of the letters as in Figure 3.10.

Figure 5.12: BSE images of encrustations formed in Experiment 167. Colored points indicate points analyzed through ED Rounded appearance hints to zeolite but analyses show Al absence. Bundles of tiny crystals are Na-rich (natrite?..). a) SiO2= 77 wt%, Na2O= 19 wt%, K2O= 4 wt%, b) red point: SiO2= 58 wt%, Na2O= 35 wt%, K2O= 7 wt%, yellow point: SiO2= 2 wt%, Na2O= 97wt%, c) SiO2= 74 wt%, Na2O= 22 wt%, K2O= 4 wt%, d) SiO2= 43 wt%, Na2O= 55 wt%, K2O= 2 wt%.

100µm

Figure 5.13: BSE image of solids trapped in the filter used to inject liquid sample in the chromatograph (Experiment 149). EDS spectra in the 2 points give $SiO_2 \sim 26$ wt%, $Al_2O_3 = 58$ wt%, FeO = 10 wt%, MgO = 4 wt% and K₂O~ 1 wt%.

5.4. Discussion

Experimental products showed extensive change respect to the rocks used as solid starting materials. Encrustations forming all around the micro-reactor walls are the most apparent and intense alteration products and they are mainly composed by quartz. Additionally, XRD spectra and SEM observation revealed the presence of diffuse boehmite, most likely a result of plagioclase dissolution. Besides quartz, XRD and/or SEM observation suggested the presence of kaolinite? (or phillipsite?) and sporadic carbonates such as magnesite and calcite in runs in which CO₂ was used as pressurizing gas. Other minor Al-Si-(Na)-rich neo-formed phases were individuated either among powdered material recovered at the end of experiments and in encrustations and in filters used to inject sampled liquid into the chromatograph.

In general, the main alteration process revealed in experiments is silicification. This process is commonly observed in geothermal fields in which may occur in different styles (e.g. Lagat, 2009). One common and important style is the replacement of the rock with microcrystalline quartz (chalcedony). This process could be facilitated and enhanced by rock's porosity. Another common style is the formation of fractures in a network, or "stockworks", which are filled with quartz (Lagat, 2009).

In Los Humeros geothermal field hydrothermal alteration transformed primary minerals in secondary minerals such as those reported in paragraph 5.1.2. The formation of secondary minerals depends upon different parameters such as temperature, pressure, fluid composition, permeability, initial composition of the rock and duration of hydrothermal activity. Samples from deep (~2 km) drill holes in Los Humeros geothermal field often are intensively silicified with zones constituted almost entirely of microcrystalline quartz (e.g. Elders et al., 2014). Quartz was also found as altered phase in cuttings from more superficial (800-1200 m) depths (Pulido, 2008). Furthermore, Martínez-Serrano, (2002) reported that quartz revenue is common in the three hydrothermal zones of the geothermal field (shallow argillitic, propylitic and skarn) and it is very abundant at depths of <900 m.

In geothermal area quartz can be a common product of both low sulfidation and high sulfidation alteration (Boden, 2016). Quartz produced in experiments is a product of the first alteration type, since reactant fluids have near-neutral-pH. Under these conditions quartz content of the rock can increase making it less permeable. On the contrary, in high sulfidation alteration the presence of low pH (<3) fluids would leave a silica residue (referred to as vuggy quartz) with good porosity, thus favoring fluid circulation (Boden, 2016). In Los Humeros reservoir rocks contain hydrothermal alteration minerals typical of those produced by neutral or alkaline fluids, even if local alteration with acidic fluids is sometimes observed, especially in the lower hornblende-containing andesites (Elders et al., 2014; Tello et al., 2000: Rodriguez, 2000, see paragraph 5.1.2). As a consequence, quartz formation could have played a dual role either decreasing or enhancing rock porosity.
The finding of quartz and Al-rich phases such as boehmite in all experiments reveal they mainly formed by reaction interesting plagioclases in andesites. Plagioclases can dissolve incongruently according to the following reaction:

$$Na_{x}Ca_{(1-x)}Al_{(2-x)}Si_{(2+x)}O_{8} + 4(2-x)H^{+} = xNa^{+} + (1-x)Ca^{2+} + (2-x)Al^{3+} + (2+x)SiO_{2} + 2(2-x)H_{2}O_{2} + (2-x)H_{2}O_{2} + (2-x)Al^{3+} + (2-x$$

where x=mol fraction of albite in plagioclase (x=1, pure albite; x=0, pure anorthite).

The reaction usually led to kaolinite $(Al_2Si_2O_5(OH)_4)$ crystallization in conditions where natural weathering and diagenetic processes occur at the Earth's surface.

At ambient T, dissolution rates of plagioclases are a function of pH, with values decrease with increasing pH at acidic conditions but rise with increasing pH at alkaline conditions (U-shaped behavior, (Gudbrandsson et al., 2014). Furthermore, only at acidic conditions, dissolution rates increase with anorthite contents (Gudbrandsson et al., 2014). At higher T (200-300°C), plagioclases dissolution was investigated under hydrothermal conditions in the presence of aqueous solutions and supercritical CO₂ by (Hangx & Spiers, 2009). The experiments, finalized to investigate CO₂ mineral trapping, were performed in similar conditions and settings of our experiments, albeit starting with plagioclases (albite or anorthite) as starting materials. They mainly got precipitation of boehmite, kaolinite and a phyllo-silicate phase (smectite or illite) and little or no carbonate formations. They suggest that reaction controlling plagioclase dissolution may have occurred to a limit extent. As in our experimental products, the finding of boehmite as a main phase is intriguing, since this phase is not commonly found in geological contexts in which plagioclases alter. Nevertheless, boehmite crystallization is reported to be a common secondary phases generated by plagioclase dissolution under moderately acidic conditions even at 200-300 °C (Murakami et al., 1998; Tsuzuki & Suzuki, 1980). This phase could be considered as a precursor of kaolinite formation, whose precipitation rates are relatively slow compared with plagioclase dissolution rates (Gudbrandsson, 2014). The paucity of carbonates among our experimental products is not surprising since the crystallization of these phases is hindered by a sort of "kinetic barrier" due to the fact that their nucleation would have to be heterogeneous (Hangx & Spiers, 2009).

Experiments show that alteration occur also when CO_2 is not used as pressurizing gas. The presence of this gas is therefore not a prerequisite in order to explain the alteration paragenesis mineralogy found in experiments and, in a broader context, even in Los Humeros geothermal area.

Another evidence of the experiments is the absence of propylitic alteration, i.e. formation of new minerals (e.g. chlorite, actinolite, epidote) formed by the decomposition of Fe-Mg minerals, such as micas, amphiboles and pyroxenes. Temperatures of the experiments are rather favorable to the development of propylitic alteration (Figure 5.14). This process, although commonly observed in low sulfidation alteration (and present in Los Humeros geothermal reservoir) could have not be happened in experiments due to kinetic factors (duration of experiments short?) or to the

relatively low abundance of pyroxenes and the lack of amphiboles in the rock used for the experiments. As an alternative hypothesis, propylitic alteration could have developed but gone undetected by the investigations performed, due to instrumental and/or analytical constraints (i.e. powder XRD phases < 5 wt%).

It is noteworthy the wairakite appearance among alteration products in the experiment in which west-driven infiltrating fluid was taken into account. This fluid interacted with carbonatic rocks before entering into the reservoir and its high Ca contents allowed the crystallization of wairakite as the aluminosilicate phase, instead of boehmite. Wairakite is a common alteration product in LHGF at 200-300 °C (e.g. Martínez-Serrano, 2002) and is expected to develop in such geological scenario (Figure 5.14). Its crystallization, in solid solution with analcime (NaAlSi₄O₁₂•2H₂O) is possible in the 200-350 °C range, as a consequence of reaction of an anorthite rich plagioclase with quartz and fluid (Galbarczyk-Gasiorowska & Slaby, 2001).

Figure 5.14: Chart showing temperature stability ranges of common alteration minerals (from Boden, 2016).

5.5. Conclusions

Fluid –rock interaction experiments run at 200-300 °C considering Los Humeros andesitic reservoir and fluids flowing through it, indicate silicification as the most important alteration process. Labradorite, andesine and oligoclase plagioclases in andesites are the principally involved phases in such process leading also to the development of Al-rich phases such boehmite.

The use of CO_2 as pressurizing gas in experiments has the only result of bringing sporadic crystallization of carbonates but do not particularly increase the extent of alteration of rocks used in experiments. Plagioclase dissolution should have caused Ca, Na-rich phase precipitation, as wairakite, phillipsite or other unidentified phases; however, the analytical methods used were not able to establish with any certainty the presence of phillipsite, nor to establish if other minor phases formed during alteration. In particular, wairakite crystallization during the experiment in which high salinity (Ca-rich) water was used suggests that in LHGF high mineralized waters likely reacted with andesitic reservoir. This phase is commonly found among alteration products in LHGF and its finding in such experimental products could corroborate the hypothesis that infiltrating waters extensively reacted with crossed rocks before reaching the reservoir. Finally, the widespread formation of quartz encrustations following hydrothermal alteration could provoke a porosity decrease of andesitic reservoir, especially under conditions in which reactant fluids have near-neutral pH.

Acknowledgements

G. Norini and M. Lelli are acknowledged to have provided rock and liquid samples, respectively. J. Cabassi and F. Capecchiacci performed liquid chromatography analyses, L. Chiarantini and M-Ulivi are acknowledged for SEM investigations, L. Chelazzi (CRIST-Unifi) and E. Pecchioni (DST-Unifi), for assistance during XRD analyses. The authors wish to thank C. Rochelle, O. Vaselli, S. Caporali and G. Morelli for helpful discussions. This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 727550.

5.6. References

- Arellano, V. M., García, A., Barragán, R. M., Izquierdo, G., Aragón, A., & Nieva, D. (2003). An updated conceptual model of the Los Humeros geothermal reservoir (Mexico). *Journal of Volcanology and Geothermal Research*, 124(1–2), 67–88. http://doi.org/10.1016/S0377-0273(03)00045-3
- Boden. (2016). 10. Geothermal Systems and Mineral Deposits.
- Canet, C., Trillaud, F., Prol-Ledesma, R. M., González-Hernández, G., Peláez, B., Hernández-Cruz, B., & Sánchez-Córdova, M. M. (2015). Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dating. *Journal of Volcanology and Geothermal Research*, 305, 56–62. http://doi.org/10.1016/j.jvolgeores.2015.09.019
- Carrasco-Núñez, G., López-Martínez, M., Hernández, J., & Vargas, V. (2017). Subsurface stratigraphy and its correlation with the surficial geology at Los Humeros geothermal field, eastern Trans-Mexican Volcanic Belt. *Geothermics*, 67, 1–17. http://doi.org/10.1016/j.geothermics.2017.01.001
- Elders, W. A., Izquierdo, G. M., Arag, A. A., Tovar, R. A., & Flores, M. A. (2014). Significance of deep zones of intense bleaching and silicification in the Los Humeros high-temperature geothermal field, Mexico: Evidence of the effects of acid alteration. *Transactions Geothermal Resources Council*, 38, 497–502. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84937884462&partnerID=tZOtx3y1

Galbarczyk-Gasiorowska, L., & Slaby, E. (2001). Experimental investigation of the reaction : An-

rich plagioclase + quartz+ fluid = analcime-wairakite ss. *Acta Geologica Polonica*, *51*(2), 155–162.

- García-Vallés, M., Pi, T., Alfonso, P., Canet, C., Martínez, S., Jiménez-Franco, A., ... Hernández-Cruz, B. (2015). Kaolin from Acoculco (Puebla, Mexico) as raw material: Mineralogical and thermal characterization. *Clay Minerals*, 50(3), 405–416. http://doi.org/10.1180/claymin.2015.050.3.12
- Giordano, G., Calzolari, G., & Lucci, F. (2017). Regional structural and tectonic synthesis of the Acoculco and Los Humeros Geothermal fields.
- Gudbrandsson, S. (2014). Experimental weathering rates of aluminium-silicates Snorri Gudbrandsson To cite this version : HAL Id : tel-00933440.
- Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S. R., & Oelkers, E. H. (2014). Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22°C. *Geochimica et Cosmochimica Acta*, *139*, 154–172. http://doi.org/10.1016/j.gca.2014.04.028
- Gutiérrez-Negrín, L. C. ., & Izquierdo-Montalvo, G. (2010). Review and Update of the Main Features of the Los Humeros Geothermal Field, Mexico OS HUMEROS. In *Proceedings World Geothermal Congress* (pp. 25–29).
- Hangx, S. J. T., & Spiers, C. J. (2009). Reaction of plagioclase feldspars with CO2under hydrothermal conditions. *Chemical Geology*, 265(1–2), 88–98. http://doi.org/10.1016/j.chemgeo.2008.12.005
- Hurst, V. J., & Kunkle, A. C. (1985). Dehydroxylation, Rehydroxylation, and Stability of Kaolinite. *Clays and Clay Minerals*, 33(1), 1–14. http://doi.org/10.1346/CCMN.1985.0330101
- Lagat, J. (2009). Hydrothermal Alteration Mineralogy in Geothermal Fields With Hydrothermal Alteration Mineralogy in Geothermal Fields With Case Examples From Olkaria Domes Geothermal Field, Kenya.
- Le BAS, M. J., Maitre, R. W. Le, Streckeisen, A., Zanettin, B., & Rocks, I. S. on the S. of I. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. *Journal of Petrology*, 27(3), 745–750.
- López-Hernández, A., García-Estrada, G., Aguirre-Díaz, G., González-Partida, E., Palma-Guzmán, H., & Quijano-León, J. L. (2009). Hydrothermal activity in the Tulancingo-Acoculco Caldera Complex, central Mexico: Exploratory studies. *Geothermics*, 38(3), 279–293. http://doi.org/10.1016/j.geothermics.2009.05.001
- Martínez-Serrano, R. G. (2002). Chemical variations in hydrothermal minerals of the Los Humeros geothermal system, Mexico. *Geothermics*, *31*(5), 579–612. http://doi.org/10.1016/S0375-6505(02)00015-9
- Matsuda, T., Kurosaki, M., & Henmi, K. (1992). Equilibrium between kaolinite and pyrophyllite. *Clay Science*, *8*, 297–308.
- Murakami, T., Kogure, T., Kadohara, H., & Ohnuki, T. (1998). Formation of secondary minerals and its effect on anorthite dissolution. *American Mineralogist*, 83(11–12), 1209–1219. http://doi.org/10.2138/am-1998-11-1209
- Norini, G., Groppelli, G., Sulpizio, R., Carrasco-Núñez, G., Dávila-Harris, P., Pellicioli, C., ... De Franco, R. (2015). Structural analysis and thermal remote sensing of the Los Humeros Volcanic Complex: Implications for volcano structure and geothermal exploration. *Journal of Volcanology and Geothermal Research*, 301, 221–237. http://doi.org/10.1016/j.jvolgeores.2015.05.014
- Pulido, C. D. L. (2008). Borehole Geophysics and Geology of Well H-43, Los Humeros Geothermal Field, Puebla, México. Geothermal Training Programme.
- Rodrguez, F. C. (2000). Hydrogeologic model of the geothermal reservoir from Los Humeros, Puebla, Mexico. *Geothermal Resources Council Transactions*, 24, 381–409. http://doi.org/10.1080/09640560701402075
- Tello, E. H., Verma, M. P., & Tovar, R. A. (2000). Origin Of Acidity In The Los Humeros, México, Geothermal Reservoir. *World Geothermal Congress*, 2959–2967.
- Tsuzuki, Y., & Suzuki, K. (1980). Experimental study of the alteration process of labradorite in acid

hydrothermal solutions. *Geochimica et Cosmochimica Acta*, 44(5). http://doi.org/10.1016/0016-7037(80)90157-X

Wagner, W., Pruss, A. (2002). The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. *Phys. Chem. Ref. Data*, 31(2), 387-535.

Chapter 6

GEOCHEMICAL MODELING Well fluids geochemical data analysis and modeling

6.1. Introduction

The aim of the present work is to define the origin of chemicals present in the fluids of Los Humeros geothermal field, providing an insight on recharge input and contribution of eventual deep component.

The fluid analysis from geothermal wells were provided by CFE, and consist of time series of different time-span from many wells within Los Humeros geothermal field. After inspection of the data, we have a total of 38 wells with suitable data. In a well specific data investigation, we have selected the "first" complete analysis available (in some cases gas analysis have different data from water analysis) as representative of the starting composition of the well. In fact, in the time series we can observe large fluctuation of composition over time, due to the recharge and other different contribution to the produced fluid, but this may jeopardize the true source. For this reason, we choose to use only the first data available for each well, that in theory are not very perturbed from other contribution.

The data are then recomputed to have a total composition in moles / Kg of water, including the non condensable gas and here reported in table 1.

Geochemical data in this format could be used in a consistent way for both statistical analysis and geochemical modeling.

Well	Coordinate_X	Coordinate_Y	H+	Cl	В	HCO3	SiO2	SO4	Na	к	Li .	Ca	Mg	As	Fe	Ar	CH4	CO2	H2	H2S	He	N2	NH3
H-1V	661906	2175060	6.31E-09	3.09E-03	2.08E-02	0.00E+00	1.24E-02	6.59E-04	1.30E-02	1.16E-03	2.59E-04	2.25E-05	0.00E+00	0.00E+00	0.00E+00	-	-	-	-	•			
H-2	662646	2172440	5.01E-09	1.13E-03	3.05E-04	4.40E-03	7.59E-04	1.92E-04	6.52E-05	3.07E-05	0.00E+00	7.49E-06	0.00E+00	0.00E+00	0.00E+00	-		-	-	•			
H-3D	660622	2177900	1.58E-08	6.91E-04	6.36E-02	3.02E-03	1.11E-02	1.89E-03	1.57E-02	1.20E-03	9.22E-05	3.74E-05	1.23E-06	1.20E-05	0.00E+00	-		-	-				
H-6-V	663508	2173550	1.00E-08	9.56E-03	3.52E-02	6.59E-04	1.97E-02	6.45E-05	1.23E-02	1.18E-03	0.00E+00	2.87E-05	8.23E-06	0.00E+00	0.00E+00	-		-	-				
H-7-V	661838	2175870	6.31E-09	3.95E-03	5.89E-02	7.20E-04	1.27E-02	3.57E-04	9.57E-03	1.01E-03	1.01E-04	2.74E-05	0.00E+00	0.00E+00	0.00E+00	-		-	-				
H-8-V	661582	2176390	5.01E-09	3.20E-03	4.96E-02	2.40E-03	2.13E-02	4.51E-04	1.66E-02	1.41E-03	8.65E-05	2.00E-05	0.00E+00	0.00E+00	0.00E+00	-	-	-	-	-	-	-	
H-9-V	660618	2178220	5.01E-07	3.37E-03	4.28E-01	1.35E-02	2.23E-02	0.00E+00	1.77E-02	1.99E-03	1.30E-04	9.98E-05	1.23E-05	0.00E+00	0.00E+00	-		-	-		-		-
H-10-V	662081	2176380	7.94E-07	7.62E-05	3.05E-01	1.52E-03	1.70E-03	2.19E-05	0.00E+00	0.00E+00	0.00E+00	3.74E-05	0.00E+00	0.00E+00	0.00E+00	-		-	-		-		-
H-11-D	662574	2177440	3.98E-05	3.40E-02	1.12E-01	7.05E-05	2.01E-02	9.89E-05	7.57E-03	7.37E-04	0.00E+00	8.73E-05	0.00E+00	0.00E+00	0.00E+00	-		-	-				-
H-12	663803	2173050	1.58E-07	4.29E-04	2.13E-01	4.87E-04	9.70E-03	3.36E-04	6.70E-03	5.75E-04	9.37E-05	1.09E-04	5.35E-06	2.56E-04	0.00E+00	-		-	-				-
H-13-D	662244	2177410	5.01E-09	1.04E-02	2.59E-02	7.61E-04	1.08E-02	5.96E-04	1.62E-02	1.51E-03	2.13E-04	0.00E+00	1.23E-06	0.00E+00	0.00E+00	-		-	-				-
H-14-V	663832	2169630	3.16E-09	2.05E-03	1.52E-02	1.84E-02	1.14E-02	2.56E-04	1.66E-02	4.35E-04	4.18E-05	2.69E-04	2.18E-05	2.00E-05	0.00E+00	-		-	-		-		-
H-15	661638	2178800	3.16E-09	5.36E-04	2.00E-02	5.87E-04	1.64E-02	1.21E-04	5.78E-03	6.47E-04	1.01E-04	3.74E-06	3.70E-06	3.34E-05	0.00E+00	0.00E+00	2.17E-02	6.38E-01	1.41E-02	8.56E-02	0.00E+00	1.11E-02	0.00E+00
H-16	661557	2178250	3.16E-10	2.68E-04	2.39E-02	9.25E-04	6.43E-03	2.26E-03	3.29E-02	7.19E-04	2.31E-04	5.99E-06	3.70E-06	4.00E-05	0.00E+00	1.39E-04	6.58E-03	3.48E-01	3.51E-03	5.02E-02	0.00E+00	5.06E-03	8.12E-04
H-17	662298	2178610	3.98E-08	5.36E-04	3.56E-02	6.25E-04	1.43E-02	1.86E-04	3.78E-03	4.19E-04	4.61E-05	3.49E-06	3.70E-06	1.68E-04	0.00E+00	4.67E-04	4.21E-03	4.12E-01	2.13E-03	5.28E-02	0.00E+00	4.01E-03	4.49E-04
H-18-V	664916	2172080	7.94E-09	3.64E-03	1.39E-02	6.67E-03	1.66E-04	2.19E-04	4.87E-03	3.32E-04	1.15E-04	1.50E-05	1.65E-06	0.00E+00	0.00E+00	-		-	-		-		-
H-19	662881	2176640	1.26E-07	1.61E-03	1.94E-01	1.72E-03	1.11E-02	1.12E-04	6.61E-03	6.47E-04	1.18E-04	2.02E-04	8.64E-06	2.94E-04	0.00E+00	2.55E-04	5.61E-09	6.43E-01	2.08E-03	4.25E-02	0.00E+00	4.61E-03	6.52E-03
H-20-V	663330	2177490	1.58E-07	9.36E-03	6.13E-02	3.44E-05	1.28E-02	1.77E-05	4.78E-03	4.35E-04	6.48E-05	3.49E-04	2.06E-06	0.00E+00	0.00E+00	-		-	-		-		-
H-22	660055	2178850	2.00E-09	9.73E-04	7.21E-03	7.27E-03	1.46E-02	2.31E-04	1.35E-02	8.44E-04	1.30E-04	6.49E-05	8.23E-06	0.00E+00	0.00E+00	-		-	-		-		-
H-23	664184	2175460	2.00E-06	2.10E-02	1.20E-02	1.64E-05	2.59E-03	1.22E-03	2.02E-02	7.26E-04	1.30E-04	3.78E-04	6.17E-06	0.00E+00	0.00E+00	0.00E+00	9.80E-03	8.55E-01	2.62E-02	1.78E-01	4.34E-05	1.88E-02	5.04E-03
H-24	665497	2172940	0.00E+00	1.19E-02	5.38E-03	6.66E-03	2.26E-04	2.97E-03	2.00E-03	2.30E-05	1.08E-04	1.25E-06	0.00E+00	2.08E-02	0.00E+00	0.00E+00	3.52E-02	1.41E+00	2.40E-02	2.98E-02	0.00E+00	1.49E-02	1.27E-02
H-27	663986	2176290	3.98E-08	7.12E-03	1.77E-02	1.69E-04	3.08E-04	1.09E-04	3.26E-03	1.53E-04	2.88E-05	2.12E-05	1.65E-06	0.00E+00	0.00E+00	0.00E+00	5.30E-04	9.69E-01	3.35E-02	6.99E-02	0.00E+00	5.05E-02	1.14E-02
H-28	662601	2177740	1.86E-09	1.02E-04	7.28E-03	2.62E-03	8.66E-03	8.51E-04	8.95E-03	4.35E-04	1.55E-04	6.41E-06	4.94E-06	0.00E+00	0.00E+00	1.57E-04	4.45E-03	1.01E+00	6.23E-03	1.99E-02	0.00E+00	1.41E-03	5.78E-04
H-30-V	661488	2178550	5.01E-06	1.41E-02	5.52E-01	4.26E-03	2.54E-03	7.29E-05	4.87E-03	3.68E-04	3.31E-05	9.98E-06	1.65E-06	0.00E+00	0.00E+00	-	-	-	-		-		-
H-31-V	661832	2179040	1.58E-08	2.76E-04	5.23E-02	5.25E-05	1.24E-02	3.33E-05	6.70E-03	7.83E-04	7.20E-05	3.74E-06	2.06E-06	0.00E+00	0.00E+00	-	-	-	-		-		-
H-32-V	662631	2178040	6.31E-08	3.07E-03	4.04E-02	1.07E-04	9.83E-03	1.27E-04	3.70E-03	6.14E-04	2.88E-05	4.99E-06	2.06E-06	0.00E+00	0.00E+00	-		-	-		-		-
H-33-V	661534	2177990	7.94E-08	7.35E-03	1.48E-01	2.84E-04	1.22E-02	2.04E-04	1.13E-02	1.02E-03	7.78E-05	6.11E-05	2.47E-06	0.00E+00	0.00E+00	-		-	-	•			
H-34-D	662965	2177210	1.00E-08	1.12E-03	3.32E-02	2.16E-03	7.20E-03	2.92E-04	7.83E-03	5.93E-04	1.05E-04	1.57E-05	8.23E-07	4.00E-05	0.00E+00	-		-	-	•			
H-37-D	661074	2178350	5.01E-09	1.21E-04	1.37E-01	1.77E-03	1.00E-02	2.29E-03	2.20E-02	1.51E-03	6.77E-05	7.73E-05	0.00E+00	1.56E-05	0.00E+00	-		-	-	•			
H-38-V	661897	2178160	2.00E-07	4.51E-05	3.24E-03	4.07E-04	1.75E-04	1.04E-06	4.35E-06	2.56E-06	1.44E-06	2.50E-06	0.00E+00	2.48E-04	0.00E+00	-		-	-				
H-39	663365	2173290	5.01E-07	8.97E-04	2.71E-01	9.49E-04	8.80E-03	6.35E-04	6.96E-03	5.52E-04	8.36E-05	1.40E-04	9.88E-06	4.07E-04	0.00E+00	4.41E-04	3.64E-03	7.82E-01	1.25E-02	3.22E-02	9.46E-05	1.92E-02	1.01E-03
H-40-D	661754	2175710	3.98E-09	5.59E-03	1.35E-02	2.25E-02	1.59E-02	3.31E-03	2.25E-02	2.33E-03	1.14E-04	2.40E-04	1.93E-05	9.61E-05	0.00E+00	-		-	-				
H-41	663570	2173280	0.00E+00	2.80E-02	2.42E-03	3.44E-03	2.21E-04	8.61E-04	2.28E-04	6.69E-06	9.13E-05	3.34E-06	7.02E-05	1.83E-02	0.00E+00	2.16E-04	1.30E-02	9.24E-01	2.11E-02	7.03E-02	0.00E+00	5.57E-03	1.85E-02
H-43	661175	2178040	1.48E-06	1.27E-04	3.16E-03	2.44E-04	2.16E-04	8.01E-05	1.35E-05	6.91E-06	0.00E+00	4.99E-06	0.00E+00	9.00E-05	0.00E+00	5.05E-03	2.69E-02	2.24E+00	1.75E-01	2.28E-01	0.00E+00	4.21E-01	1.19E-04
H-49	661866	2175000	4.27E-09	4.62E-03	1.90E-02	3.64E-04	1.61E-02	6.91E-04	1.08E-02	1.03E-03	1.12E-04	5.66E-05	4.94E-06	0.00E+00	0.00E+00	1.83E-04	1.59E-02	7.40E-04	7.60E-02	7.98E-04	1.58E+00	3.88E-02	4.08E-03
H-56	662238	2174380	2.09E-08	6.25E-03	6.50E-02	4.29E-03	2.06E-02	8.98E-04	1.20E-02	1.13E-03	1.15E-04	7.56E-05	1.89E-05	0.00E+00	8.95E-06	9.32E-05	8.70E-03	3.59E+00	2.90E-02	8.26E-02	1.21E-04	2.37E-02	1.49E-02
H-58	662555	2177460	0.00E+00	1.03E-01	6.22E-03	8.42E-04	4.83E-04	3.61E-04	7.35E-05	2.66E-06	2.94E-03	2.86E-05	2.67E-03	5.24E-02	0.00E+00	1.26E-04	1.31E-03	7.45E-01	8.66E-03	3.91E-02	5.38E-05	7.46E-03	3.89E-04
H-59	661574	2178240	9 12E-08	5.02E-03	2 30E-01	4 84E-03	6 57E-03	1 1/F-03	1.44E-02	1.42E-03	1.44E-05	1 35E-03	1 11E-03	0.00E+00	1 50E-03	6 36E-04	1 34E-03	1 75E-01	4 04E-02	8 02E-02	0.00E+00	4 74E-02	5 36E-03

Table 1 - CFE data from Los Humeros well fluids expressed in moles/Kg of water

6.2. Principal Component Analysis (PCA)

In this section, the focus is on describing the results of the classical and robust version of principal component analysis (PCA) for the geochemical data. These methods are applied to all variables with reasonable data quality of the data set. For 38 observations, i.e. 38 well fluid compositions, the concentrations of chemical species have been investigated.

The aim of principal component analysis is to find the relationships between the fluid composition and to characterize the chemical-spatial behavior. Since the data consist of different groups, a robust analysis will focus on the homogeneous data extracted so far.

Classical principal component analysis can be driven mainly by the *outlying groups*, and thus the focus is less on the homogeneous majority.

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables (entities each of which takes on various numerical values) into a set of values of linearly uncorrelated variables called principal components. If there are n with p variables, then the number of distinct principal components is min(n-1, p). This transformation is defined in such a way that the first principal component has the largest possible variance (that is, accounts for as much of the variability in the data as possible), and each succeeding component in turn has the highest variance possible under the constraint that it is orthogonal to the preceding components. The resulting vectors (each being a linear combination of the variables and containing n observations) are an uncorrelated orthogonal basis set. PCA is sensitive to the relative scaling of the original variables; to avoid this, the data are elaborated subtracting the average value for each variable and then dividing by it, to obtain a scaled working matrix with zero average. Some difficulty may arise while correlating the results of PCA investigation with the real data, but for this second step we looked for meaningful variables that have similar spatial distribution to PCA components and hence we can safely attribute the physical meaning to the results of the statistical analysis. In our investigation, out of the resulting 21 components, the 1st one explain 86.24% data variability, 2nd one 10.40% data variability and 3rd one 2.40% and the others are negligible; our complex dataset could be explained by using only 3 component that are described here below.

6.2.1 PCA 1st component, water-rock interaction

Figure 1 PCA 1st component score distribution, left, and pH distribution, right. Coordinates are in meters.

The first component pf PCA analysis is closely related to pH, and according to Tello et al., 2000, the Los Humeros geothermal reservoir is in an unbalanced state having only a partial water-rock chemical equilibrium. The magmatic components in the geothermal fluids are not neutralized by the reaction with feldespars and micas, with high concentrations of HCl and HF detected in the steam phase. The oxidation of sulphur species and the CO₂ content may have a secondary role in the acidity. As a consequence, the PCA 1st first component is related to water-rock interaction driven by acidity, and include CO2(g), SiO2, Fe, Ca, Cl, Li, Mg, As, H2S, N2(g), H2(g). This component have also some relationship with the 3rd component, that is represented by Boron.

The variability in the Los Humeros reservoir, can be explained by 2 fluids types. Low mineralized waters form part of a liquid-dominated, bicarbonate reservoir at a depth from 1330 to 1755 m b.s.l., here represented by PCA 2nd component, characterized by a smaller range and lower concentrations of As. In contrast, deeper wells produce a two-phase fluid with maximum As concentrations of 162 mg/l.

Main hydrothermal zones are formed by chlorite, epidote, quartz, calcite, and low proportions of leucoxene and pyrite, as well as clays, biotite, zeolite, anhydrite, garnet, diopside and wollastonite (Izquierdo et al. 2000). However, no As minerals have been recognized, and having here classified Cloride (Bernard et al., 2011) as part of a deep fluid source undergoing to strong water-rock interaction and fractionation processes we can gues that As have a similar fate.

6.2.2 PCA 2nd component, recharge

Figure 2 PCA 1st component score distribution, left, and pH distribution, right. Coordinates are in meters.

The second component pf PCA analysis is closely related to bicarbonates, as shown in figure 2. The composition of this second component is made by mainly HCO3-, SO4-2, Na, K, Ar and it is clearly related to regional recharge mechanism, being significatively different in composition and salinity with respect to the rest of the system. The presence of low mineralized waters that form part of a liquid-dominated, bicarbonate reservoir at a depth from 1330 to 1755 m b.s.l., could be related to the regional recharge that seem to have its main contribution from western / North-western section of the geothermal system.

6.2.3 PCA 3rd component

Figure 3 PCA 3rd component score distribution, left, and boron concentration in fluid in moles/ Kg of water, right. Coordinates are in meters.

The third component pf PCA analysis is closely related to Boron as shown in figure 3. According to Bernard et al., 2011, Isotopic composition of B ($-0.8 \pm 1.6\%$) suggests its magmatic origin, though sedimentary origin cannot be ruled out.

The absence of correlation they found, and here confirmed as low as -0.0772 correlation coefficient, between B and Cl concentrations may be interpreted by invoking at least two reasons, (1) different sources of Cl and B in Los Humeros fluids and (2) different behavior of H3BO3 and Cl at phase separation (boiling).

To explain the unusual behavior of Cl and B in well fluids of Los Humeros aBernard et al., 2011, proposed a model which invokes the existence of a deep acid brine boiling at a temperature of about 350 °C producing H3BO3 and HCl-bearing vapor that condenses and neutralizes at an upper level where it is tapped by wells. In our current analysis, the correlation coefficient of Boron with pH reach 0.6967 but the difference is clear while looking at the spatial distribution of 1st and 3rd PCA component as well as pH and Boron (figure 1 and 3) that although the spatial distribution is similar, the area of 1st and 3rd PCA component are neighboring and only slightly overlapping. This is due to the low reactivity of Boron, in contrast to the 1st PCA component that is the most representative of water-rock interaction, and even though the source at depth is the same the path while uprising is very different.

6.3. Geochemical modeling of well fluids data as function of temperature

6.3.1 Introduction

The dataset obtained from CFE data, selecting the "first fluid" composition, is the base data here used as reference for the geochemical modeling, being less to no affected by any disturbance that will come during the geothermal system management. Using chemical analyses and 25° pH measurements of quenched high-temperature waters, we calculate in situ pH and distribution of aqueous species at high temperature; data in table 1 are referred to total fluids, reconstructed from available data, on wich we can compute the concentration change due to phase segregation at the different process stage. It is here noteworthy to point out that NCG gas solubility will change both in well and reservoir, but steam phase separation is a process mostly related to well production, being the reservoir at its initial state mainly in liquid condition with possible 2 phase (and maybe steam) zones only at depth, in the northern sector. In the present work we will compute the activities of aqueous ions in a given water at high temperature, which are used to calculate an ion activity product (Q) for each minerals. The value of log(Q/K) for each mineral, where K is the equilibrium constant, provides a measure of proximity of the aqueous solution to equilibrium with the mineral. By plotting log Q/K vs. T for natural waters, it is possible to determine: a) whether the water was in equilibrium with a host rock mineral assemblage, b) probable minerals in the equilibrium assemblage and c) the temperature of equilibrium. In cases where the fluid departs from equilibrium with a host rock assemblage, it is possible to determine whether this may result from boiling or dilution, and an estimate of amount of lost gas or diluting water can be determined.

Moreover, in the present models saturated minerals are allowed to precipitate thus providing an insight on the current most likely secondary phases among the one known in Los Humeros and to evidence the presence of possible scaling minerals. The well fluid composition here selected are a subset of all the analysis available, and are the ones that could be constrained by phase separation effect that account for boiling and CO_2 solubility. Moreover, some key elements are completely missing like Aluminium, and other relevant are rarely measured, like Iron. To partially ought to this inconvenient, a small amount (1E-7moles/Kgw) of Al⁺³ is added to the fluid composition. The reservoir steady state model providing the thermodynamic and steam/liquid saturation conditions in the reservoir is from WP 6. The temperature runs are all uniforms and cover a temperature range 160-350 °C, to include all the temperature from shallow to deep feed zones.

The code used for the following computation is chim-xpt (Reed et al., 2012). CHIM-XPT and its ancestors were developed for modeling the geochemistry of hydrothermal processes, it applies to any problem that involves calculating states of equilibrium or partial equilibrium in gas-solid-aqueous systems and it is able to deal with boiling and phase separation problems up to high temperature (up to 600°C). The thermodynamic database here used is computed with Supcrt (Johnson et al., 1992),

with only some modification, addition of aqueous H4SiO4 from Stefánsson, A. (2001), for improved silicate mineral log Ks at low T and all minerals from Holland and Powell (2011).

6.3.2 well H-15

In well H-15 are encountered some of the most common secondary minerals, like chlorite and daphnite as part of the argillification process of andesites. The abundances of these phases are not too reliable due to our add af Aluminium, needed to include these minerals in the model. The main secondary minerals resulting from our model are calcite, pyrite and quartz, that are common secondary phases at Los Humeros both in the reservoir rocks and as scaling minerals in wells. Tremolite result always present, and it is a methamorphic amphibole pertaining to the original rock, like ferroactinolite, that at lower temperature and in presence of CO_2 tend to decompose in to talc/clay, calcite and quartz.

In well H-16 unfortunately we cannot compare directly with the mineral assemblage published by Gutierrez Negrin et al., 1990, since they found as main scaling minerals Iron sulphides, Iron oxides and quartz, but in the chemical analysis Iron is missing, thus we results with only quartz precipitation.

6.3.4 well H-17

In well H-17 we have only quartz as secondary phase; this is a common occurrence in case of missing analysis of Iron.

In well H-19 we have only quartz as secondary phase; this is a common occurrence in case of missing analysis of Iron.

6.3.6 well H-22

In well H-22 we have quartz as secondary phase, tremolite pertaining to the original rock and an interesting example of change from wollastonite to calcite, being the former pertaining to the skarn/hydrothermal alteration at high temperature and the latter a secondary mineral likely to act as potential scaling mineral.

In well H-23 we have only quartz at very low temperature and tremolite at very high temperature, both temperature out of range for shallow and deep feed zones.

6.3.8 well H-28

In well H-28 we have quartz as secondary phase, and another interesting example of change from wollastonite to calcite, being the former pertaining to the skarn/hydrothermal alteration at high temperature and the latter a secondary mineral likely to act as potential scaling mineral.

6.3.9 well H-49

In well H-49 we have a possible low temperature alteration producing quartz ad kaolinite. The presence of chlorite is at 220-310°C, around the disappearance of tremolite, and we found a sulphate phase made of anhydrite at high temperature (>240°C).

6.3.10 well H-56

In well H-56 we have a possible low temperature alteration producing quartz ad kaolinite. The presence of chlorite is at 220-310°C, around the disappearance of tremolite, and we found a sulphate phase made of anhydrite at high temperature (>240°C), similar to well H-49.

6.3.11 well H-59

In well H-59 are encountered some of the most common secondary minerals, like chlorite and daphnite as part of the argillification process of andesites. The abundances of these phases are not too reliable due to our add af Aluminium, needed to include these minerals in the model. The main secondary minerals resulting from our model are calcite, pyrite and quartz, that are common secondary phases at Los Humeros both in the reservoir rocks and as scaling minerals in wells. Tremolite result always present, and it is a methamorphic amphibole pertaining to the original rock, like ferroactinolite, that at lower temperature and in presence of CO₂ tend to decompose in to talc/clay, calcite and quartz. These results are very similar to well H-15.

6.3.12 Simultaneous equilibria

We used the fluid sample from well H-59 sampled 16/8/2016 as representative fluid sample at depth, since it is a sample with the best score on PCA 1st component, and added 1e-7 moles/Kgw of Al⁺³, to investigate the Saturation Index (S.I.) vs temperature following the approach described in Reed and Spycher 1984. In this approach, S.I. line crossing represent the equilibrium among two or more minerals at crossing point. Ideally, the crossing happen at S.I. = 0, but due to many possible interferences and our guessing of Al⁺³ concentration this may happen at different values of S.I. In the figure, primary minerals are evidenced by bold lines and are Anorthite – Albite, Diopside-Hedenbrgite (Pyroxene), Augite, K-feldspar, Olivine (Fayalite-Forsterite) in Basaltic andesites. In this computation, anorthite is always not stable, mainly due to the pH that is nearly neutral to slightly acidic, while anorthite would require an alkaline environment.

In this diagram we are able to find 3 different zones with important simultaneous equilibria.

The zone number 1, at temperature ranging 170-210°C is related to low temperature equilibrium, in wich the final phases of alteration like quartz, chalcedony and kaolinite become the most stable. In our opinion, this process is related to self-sealing mechanism above the shallow feed zone.

The zone number 2, at temperature ranging 255-300°C, is characterized by the appearing of high temperature metamorphic minerals like wollastonite, epidote and the disappearance of albite and microcline to form quartz/chalcedony; this particular facies of thermos-methamorphism in the

hydrothermal system could be responsible for the separation between shallow and deep feed zone, due to the formation of hydrothermal minerals in the small fractures that are responsible for the low permeability of the feed zones.

The zone number 3, at temperature ranging 320-340°C, have the simultaneous equilibrium of hedenbergite, forsterite and albite pointing out the starting condition for the hydrothermal alteration.

6.4. Conclusion

In the investigation of the possible mineral phases and their behavior as function of temperature, including the finding of Prol-Ledesma and Browne 1989 and Martinez-Serrano 2002, we can summarize the behavior as due to assemblage of primary minerals:

Anorthite – Albite, Diopside-Hedenbrgite (Pyroxene), Augite, K-feldspar, Olivine (Fayalite-Forsterite) in Basaltic andesites

The possible hydrothermal/methamorphic high temperature secondary minerals are:

Tremolite – Actinolite (amphibole), Daphnite/Chlorite, Quartz, Calcite, Kaolinite, Illite – Montmorillonite – Muscovite, Epidote, Pyrite, Wairakite, K-feldspar, Diopside-Hedenbrgite (Pyroxene), Biotite, Garnet

Due to water-rock interaction (including CO_2 and the acidic fluids), in particular at low temperature, a group of secondary minerals with scaling potential could be defined as:

Pyrrhotite, Pyrite, Quartz - Chalcedony, Calcite, Anhidrite-Bassanite-Gypsum

In this assemblage, pyrite is more common than pyrrhotite in spite of the high temperature, due the H_2S fugacity, while iron oxides are expected to appear in case of very low Sulphur concentration. These findings are also consistent with Gutierrez Negrin et al., 1990, that found scaling in well H-16 made up of Iron sulphides and oxides, amorphous silics, quartz, chalcedony, anhydrite and gypsum with some carbonatetes.

Moreover, the simultaneous equilibria method show that on top of the shallow feed zone a permeability reduction is expected due to self-sealing made by quartz/chalcedony, kaolinite and possible calcite minerals.

The main hydrothermal alteration start at a temperature intermediate between shallow and deep feed zones, and could be responsible for the partial separation of the two feed zone inside a single low permeability reservoir.

References

Bernard R., Taran Y., Pennisi M.;. Tello E., Ramirez A., "Chloride and Boron behavior in fluids of Los Humeros geothermal field (Mexico): A model based on the existence of deep acid brine", Applied Geochemistry 26 (2011) 2064–2073

J. Bundschuh, M.A. Armienta, P. Birkle, P. Bhattacharya, J. Matschullat & A.B. Mukherjee, "Geogenic Arsenic in Groundwater of Latin AmericaChapter: The abundance of natural arsenic in deep thermal fluids of geothermal and petroleum reservoirs in Mexico", CRC PressEditors, 2009

Gutierrez Negrin L.C.A., Guerra J.C.V., "Corrosion and scaling in the well H-16 of the Los Humeros Geothermal Field", Geothermal Resources Council Transactions, Vol. 14, Part 11, August 1990

Holland T.J.B., Powell R.,"An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids", J. Metamorph. Geol., 29 (2011), pp. 333-383

Johnson J.W., Oelkers E.H.,† Helgeson H.C. "SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C", Computers & Geosciences, Volume 18, Issue 7, August 1992, Pages 899-947

Martinez-Serrano R.G., "Chemical variations in hydrothermal minerals of the Los Humeros geothermal system", Mexico, Geothermics 31 (2002) 579–612

Prol-Ledesma R.M. and Browne P.R.L., "Hydrothermal alteration and fluid inclusion geothermometry of Los Humeros Geothermal Field, Mexico", Geothermics, Vol. 18, No. 5/6, pp. 677-690, 1989.

Reed M., Spycher N., "Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution", Geochimica et Cosmochimica Acta, Volume 48, Issue 7, p. 1479-1492

Reed M.H., Spycher, N.F., Palandri J., "CHIM-XPT: A Program for Computing Reaction Processes in Aqueous-Mineral-Gas Systems", 2012

Stefánsson A., "Dissolution of primary minerals of basalt in natural waters: I. Calculation of mineral solubilities from 0 °C to 350 °C", Chem. Geol., 172 (3) (2001), pp. 225-250

Tello E., Mahendra H, Verma P, Tovar R. A., "Origin of acidity in the Los Humeros, Mexico, Geothermal Reservoir", Proceedings World Geothermal Congress 2000, pp 1-9

Chapter 7

HIGH TEMPERATURE TRACERS

7.1 Introduction

Organic compounds like naphthalene and pyrene sulfonates have been applied successfully as water tracers in geothermal reservoirs, and some of these compounds have been reported to be thermally stable up to 350°C at reservoir conditions [1, 2]. It has, however, been a demand for development of water tracers that are stable at even higher temperatures for tracer applications in geothermal reservoirs. Many inorganic ions have a higher thermal stability than organic anions applied as tracers in geothermal reservoirs, and it was thought that the possibility of applying inorganic anions as tracers should be investigated further. Cobalt hexacyanate $[Co(CN)_6^{3-}]$ has been applied by IFE as an inter-well water tracer for petroleum reservoirs previously using the radioactive isotope ⁶⁰Co. The tracer was found to be less stable at temperatures above 100°C, and the anionic complex is therefore not regarded as a suitable tracer for geothermal reservoirs. The task of this project was to test out the suitability of other anionic metal complexes as water tracers for geothermal reservoirs by testing their thermal stability and flooding properties, and measure their natural occurrence in geothermal fluids. One advantage when analysing metal ions in water is the high detectability that can be achieved using advanced analytical instrumentations like inductively coupled plasma mass spectrometry (ICP-MS) or neutron activation analysis. The idea of using such metal containing anions as tracers for geothermal reservoirs and other fields of tracer research has led to a patent application. In order to prevent any release of information that can create problems for the patent application process, the seven compounds tested are not at this stage revealed, but are indicated with a letter from A to G.

7.2 Methodology, Data Analysis and Discussion

7.2.1 Static Thermal Stability Tests

Seven tracer candidates were first tested for thermal stability in closed quarts vials at temperatures from 150 to 250° C. The tracer concentration for each component was about 500 ng/ml (ppb), and the test solution contained 4% NaCl. The oxygen in the vials was replaced by argon before the vials were heated in an autoclave. The autoclave chamber was pressurized with N₂ to a pressure corresponding to the inside vapour pressure of the water in the vials at the actual temperature. This was done to reduce the risk of vial breakage. The solutions were analysed by ICP-MS after one week at temperatures 150, 200 and 250°C. The measured recoveries were as shown in Figure 1.

Figure 7.1. Plot showing recoveries of 7 different tracer candidates at 150, 200 and 250°C

The results indicate that the tracer candidates A, B, C and G were reasonably stable at the temperatures applied, while the candidates D, E and F had a lower thermal stability. The increased recoveries of Tracer A, B and C at 250oC was due to contamination from the quarts vials since it was observed that some of the quarts had started to dissolve from the inside walls at the highest temperature and that the contamination was coming from impurities in the quarts. This contamination was corrected for in later experiments by increasing the tracer concentration and by including blank samples and correcting for the concentration found in the blank samples.

The same test was also performed with crushed basalt rock material present in the vials. Plots of the recoveries are shown in Figure 2.

Figure 7.2. Plot showing recoveries of 7 different tracer candidates at 150, 200 and 250°C with basalt rock material present in the vials

When basalt was present in the vials, the best recoveries were obtained for Tracer B and C. The recovery for Tracer A was high up to 200°C, but at 250°C the recovery was much lower. For the other three candidates the recoveries were markedly lower when basalt was present at temperatures 150, 200 and 250°C, indicating that the tracers were either adsorbed on or transferred to other less soluble compounds in contact with the Basalt rock particles. Vials stored at 25°C for one week were not included in the experiment, and the point of 100% at 25°C was only included in the diagram as a reference for no degradation or adsorption.

7.2.2 Development of HPLC-ICP-MS method and thermal stability tests at higher temperatures

7.2.2.1 Ion exchange HPLC method

Metals can be present in water solutions in the form of different species and hyphenated techniques have been applied for separation of the species prior to detection by for instance ICP-MS [3, 4, and 5]. A high performance liquid chromatographic (HPLC) method based on ion exchange chromatography was developed that was combined with ICP-MS, and this method was applied for analysis of Tracer A, B and C. In Figure 3 overlaid response curves from HPLC-ICP-MS analysis of standard solutions of Tracer A and B are shown. With this chromatography method the two tracers could be separated from other species of the metal elements that might be present in the sample.

The column applied was Allsep AS-2, 100x4.6mm (Alltech part No. 51219), and the eluent consisted of 0.1M NH₄CO₃ solution in water at a flow rate of 0.8 ml/min.

Figure 7.3. Plot of intensity response versus time from HPLC-ICP-MS analysis of standard solutions of Tracer A and B

Tracer C would not elute from the same column as used for Tracer A and B within reasonable time. Therefore a different shorter column was applied for Tracer C. In Figure 4 is shown chromatogram from HPLC-ICP-MS analysis of a standard solution of 10 ng/l (ppb) of Tracer C using an AG-9 50x4mm column (Dionex part No.043186). The Eluent applied was $0.2M NH_4CO_3$ at a flow rate of 1 ml/min.

Figure 7.4. Plot of intensity response versus time from HPLC-ICP-MS analysis of standard solutions of Tracer C

7.2.2.2 Ion pair reverse phase chromatography method

There is a limitation to what sort of eluent the ICP-MS instrument can tolerate in terms of salt concentration and content of organic solvents. High salt concentrations may result in clogging of the nebulizer or the MS inlet orifice, and when the content of organic solvents like methanol exceeds 20%, a layer of carbon particles may build up in the torch. Different ion pair counter ions were tested for reverse phase chromatography of the tracer candidates, and during the method development stage UV detection was applied. Tracer A and B was also available as tetra thio compounds instead of the original oxygen complex, and one task was to test such sulphur compounds as alternative or additional tracers to Tracer A and B. It was therefore important to develop a chromatographic method that could separate the oxygen and sulphur containing anions of the same metal. The sulphur containing candidates could not be analysed by the ion exchange chromatography method because the anions were too strongly retained. Analysis of Tracer A, B and C and the sulphur containing version of Tracer B by ion pair reverse phase column and the eluent consisted of 5 mM tetraethylammonium chloride and 30 mM ammoniumacetate at a flow-rate of 0.3 ml/min.

Figure 7.5. Reverse phase ion pair chromatography separation of tracer candidates using a 50mm long C18 column

When using a longer column, a better separation between the oxygen and sulphur containing version of Tracer B was achieved as shown in Figure 6.

Figure 7.6. Reverse phase ion pair chromatography separation of tracer candidates using a 250mm long C18 column

The sulphur containing version of Tracer A was found not to be stable in 4% NaCl-solution even at ambient temperature. The sulphur containing version of Tracer B was tested for thermal stability at 200°C, and the results are showed graphically in Figure 7.

Figure 7.7. Graphical presentation of recovery of Tracer A and B and the sulphur containing version of Tracer B for one week thermal stability test at 200°C

After one week at 200°C the sulphur containing compound could no longer be detected in the test solutions. The concentration of Tracer B had increased considerably compared to the amount originally added to the test solutions. It was therefore concluded that the sulphur containing

compound had been converted into the oxygen containing compound of Tracer B. The recovery of Tracer A was found to be near 80% in this experiment. The sulphur containing type of Tracer A was not included in the test solution. Since the sulphur containing compounds showed a lower thermal stability than the corresponding oxygen compounds, it was decided not to test the sulphur containing compounds any further.

7.2.2.3 Thermal Stability Tests of Tracer A, B and C at higher temperatures

The tracer candidates A, B and C were tested for thermal stability at temperatures up to 350°C in 4% NaCl solution. The test solutions were analyzed using ICP-MS only (not HPLC-ICP-MS), so that only the concentration of the metal element itself was recorded. The results that are shown graphically in Figure 8 indicate that the three metal elements were almost completely recovered up to 350°C under these conditions.

Figure 7.8. Plot showing recovery of Tracer A, B and C after one week thermal stability test in 4% NaCl at temperatures up to 350°C

The stability was also tested with Basalt rock particles in the test vials, and the results obtained are plotted in Figure 9.

Figure 7.9. Plot showing recovery of Tracer A, B and C after one week thermal stability test in 4% NaCl with Basalt rock in the vials at temperatures up to 350°C

The recovery of the metal element from Tracer C was near 100% at temperatures up to 350°C. For Tracer A the recovery of the metal element was almost 100% up to 200°C, while for Tracer B the recovery was reduced already at 200°C and was near nil at higher temperatures. The Basalt rock applied must contain some sulphide minerals since H₂S could be smelled from the vials when the Basalt containing vials were opened after exposure to high temperatures. The reason for the reduced recovery of Tracer A and B at high temperatures may therefore be due to formation of insoluble metal element sulphides.

7.2.2.4 LC-ICP-MS of thermal stability test solutions

The solutions from the thermal stability tests were also analyzed using the HPLC-ICP-MS method shown in Figure 5. A chromatogram from analysis of Tracer C is shown in Figure 10.

Figure 7.10. Chromatogram from HPLC-ICP-MS analysis of Tracer C in test solution with Basalt rock at 250°C

The first peak in the chromatogram at about 2 minutes had the same retention time as a standard solution of Tracer C. After about 6 minutes another peak eluted that contained the same metal element as Tracer C, but could not be the same component due to different retention. By analyzing the test solution using liquid chromatography mass spectrometry (LC-MS) it was found that the second peak consisted of a compound identical to Tracer C, but with one oxygen atom replaced by sulfur. This compound must be water soluble and was not adsorbed by the Basalt rock since when the test solution was analyzed by ICP-MS and only the total concentration of the metal element was recovered. Therefore, as long as the tracer was measured as the total concentration of the metal, the tracer could still function at high temperatures even though it was partly converted to a sulfur containing compound.

7.2.3 Flooding Experiments

The first flooding experiment was performed using a 3.8x7.9cm Berea sandstone core. Tracer A, B, C and G were injected, and Co(CN)₆³⁻ was also included for comparison. The temperature was set at 70°C and the mobile phase was 0.7M NaCl solution. The elution curves for the tracers are shown in Figure 11.

Figure 7.11. Plot of elution curves for tracer candidates on a Berea sandstone core at 70°C

Tracer C and Co(CN)_6^{3-} were eluted in about the same elution volume as the ideal water tracer tritiated water (HTO), while Tracer A was slightly retained. Tracer B was much more strongly retained and only 34.3% was recovered. No response was seen from Tracer G.

The next flooding experiments were performed using a setup as shown in Figure 12.

Figure 7.12. Schematic illustration of flooding experiment setup

A 42cm long steel column with internal diameter 8mm was packed with Basalt rock with particle size from 125 to 250 \Box m. Deionized water was pumped at a flow rate of 50 \Box l/min using a high pressure pump. The column was installed in an oven that could be set at temperatures from ambient up to 400°C, and the back pressure was adjusted using a back pressure regulator. The water was cooled by air in a cooling coil before collected in vials using a fraction collector. The samples were injected through a 6-port injection valve with a loop of 50 \Box l internal volume. The fraction collector was set to shift to the next vial after 5 minutes so that 250 \Box l was collected in each vial. The vials were covered with a plastic film to reduce evaporation of water from the vials during the experiment, and the vials were capped after the experiment was finished to avoid evaporation. The first experiment with the Basalt packed column was for testing flooding properties of Tracer D, E and F. Co(CN)₆³⁻ and HTO were also included for comparison. The collected fractions were analysed by radio nuclear analysis for HTO and by ICP-MS for the metal element content from Tracer D, E and F. None of the three tracer candidates D, E and F were recovered from the column within the time frame of the experiment, only Co(CN)₆³⁻ and HTO. The response curves are plotted in Figure 13.

Figure 7.13. Response curves for the metal elements from Tracer D, E, F and $Co(CN)_6^{3-}$ as a function of eluted volume compared to ideal tracer HTO in a flooding experiment with Basalt rock at 100°C and 100bar back pressure

The next experiments were performed for Tracer A, B and C at 250, 300 and 375°C and at back pressures of 100, 200 and 240 bars respectively. HTO was added to each sample before injection as a reference water tracer. The collected fractions were analysed by radio nuclear analysis for HTO and by ICP-MS for the metal element content from Tracer A, B and C.

The response curves for HTO and the metal elements from the tracer candidates are plotted in Figures 14, 15 and 16.

7.14. Response curves for the metal elements from Tracer A, B and C as a function of eluted volume compared to ideal tracer HTO in a flooding experiment with Basalt rock at 250°C and 100bar back pressure

7.15. Response curves for the metal elements from Tracer A, B and C as a function of eluted volume compared to ideal tracer HTO in a flooding experiment with Basalt rock at 300°C and 200bar back pressure

Figure 7.16. Response curves for the metal elements from Tracer A, B and C as a function of eluted volume compared to ideal tracer HTO in a flooding experiment with Basalt rock at 375°C and 240bar back pressure

At 250°C Tracer C and HTO were eluted in nearly the same volume and the recovery of Tracer C based on metal element concentration was calculated to 100%. The slightly lower recovery for HTO may be due to evaporation of HTO during the experiment. The slightly faster elution of Tracer C compared to HTO can be explained by ion exclusion effects. Tracer A was delayed in comparison with the ideal tracer HTO and the recovery was calculated to 79%. This result indicate that Tracer A was retained due to adsorption and that the tracer may have been partly converted to some other insoluble compound. Tracer B was almost completely adsorbed or converted into some other insoluble compound in the column. At 300°C the HTO and Tracer C were eluted faster and the ion exclusion effect was a bit more pronounced. The recoveries for HTO and Tracer C were 100 and 90% respectively. Also at this temperature Tracer A was delayed compared to HTO, but the recovery in this experiment was higher. It was observed also during the static experiments that the Basalt rock contained some mineral that could release Tracer A at high temperature, and it is anticipated that this was the reason for the higher recovery of Tracer A. Tracer B was not recovered in this experiment also. At 375°C which is just above supercritical conditions, HTO and Tracer C were eluted even faster from the column. The calculated pore volume of the column was reduced from 62.8% to 55.7% when the temperature was raised from 250 to 375° C. This corresponds well with the water expansion due to increased temperature from the first to the third experiment, and this is therefore regarded as the main reason for the decreased elution volume for HTO and Tracer C at higher temperatures. The reason for the more enhanced difference in elution speed for Tracer C compared to HTO is unclear. The reason for the high recovery of Tracer A must be that some of the same compound was released from the Basalt when heated. When the column was heated from 300 to 375°C before the tracer was injected, some Tracer A was released from the Basalt and eluted earlier than the peak at about 13ml that derived from the injection of Tracer A. Also at 375°C Tracer B was not recovered.

7.2.4 Pre-concentration method for Tracer C

Produced water from geothermal reservoirs may contain high concentrations of sodium chloride or other dissolved minerals, and high salt solutions cannot be analysed by ICP-MS directly. This type of water samples will have to be diluted or may have to go through a clean-up procedure to remove most of the dissolved salts. For some metal elements detection limits down to 10 pg/ml (ppt) can be achieved when the element is present in pure water, but for instance when sea water or produced water from petroleum fields are to be analysed, a dilution by a factor of 100 or more may be necessary, resulting in higher detection limits. In order to achieve a low detection limit for the tracers and thereby reduce the necessary amount needed for well injection, development of a clean-up or preconcentration method is required. For Tracer C a special clean-up procedure was developed. The method is based on application of an organic cation for formation of a lipophilic compound with the metal complex anion of Tracer C, and the organic compound can be trapped on a lipophilic resin so that inorganic ions can be removed. With this method a detection limit of about 10 ppt should be obtainable.

7.3 Conclusions

Of the seven tracer candidates tested for static thermal stability up to 250°C, three were regarded as sufficiently stable to qualify for further stability and flooding property tests. The three candidates (Tracer A, B and C) were tested further for thermal stability in closed quarts vials in 4% NaCl solution and with oxygen removed and exchanged by argon. The vials were tested at temperatures up to 350°C, with and without Basalt rock particles present in the vials for a duration of one week. When Basalt was not present, the recoveries of Tracer A, B and C were near 100% for all the three candidates. When Basalt was present, the recoveries of Tracer A and B were considerably reduced, while the recovery for Tracer C remained unchanged. Flooding experiments were performed at temperatures up to 375°C using a column filled with Basalt rock particles. The Tracer B was not recovered in the flooding experiments. Tracer A was slightly retained while Tracer C was eluted in nearly the same volume as the ideal tracer tritiated water. Tracer A was leaking from the Basalt rock particles in the column when it was heated to 300°C or above. Tracer A will therefore be less suitable in this type of rock, but may perhaps be suitable in others. Tracer B is not regarded as suitable due to adsorption. It was observed that Tracer C was partly transformed to another compound containing Sulphur when heated above 250°C with Basalt present in the vials. The Sulphur compound of Tracer C was not retained during the flooding experiment, resulting in near 100% recovery when the measurement was based on analysis of the metal element and not of any of the species of the metal element.

Of the seven compounds tested, one tracer candidate (Tracer C) showed satisfactory properties as geothermal tracer and is expected to be suitable at temperatures up to at least 375°C. Further testing of Tracer C in field experiments is therefore recommended.

References

/1/ Rose, P.E., Benoir, W.R. and Adams, C. *Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate, Amino G, and Fluorescein.* Geothermal Resource Council Transactions 22, 583-587, 1998

/2/ Rose, P.E., Benoir, W.R. and Kilbourn, P.M. *The application of the polyaromatic sulfonates as tracers in geothermal reservoirs*. Geothermics 30 (2001), 617-640

/3/ Uden, P.C. Modern trends in the speciation of selenium hyphenated techniques. Anal Bioanal Chem (2002) 373, 422-431

/4/Wille, A., Czyborra, S., Kleimann, J. *Hyphenated techniques as modern detection systems in ion chromatography*. Metrohm AG, Application note 8.000.6005EN

/5/ http://www.speciation.net/Public/Document/2007/06/21/2914.html

PART 2– ACOCULCO GEOTHERMAL SYSTEM

Chapter 1 STATE OF THE ART ON ACOCULCO GEOTHERMAL SYSTEM BEFORE GeMex

1.2 Geological and geothermal setting

The Acoculco Caldera (~18 km in diameter) is located at the eastern portion of the Trans-Mexican Volcanic Belt (TMVB), at the intersection of NE-SW Tenochtitlan-Apan, NW-SE Taxco-San Miguel de Allende, and E-W Chapala-Tula fault systems and on the NE-SW Rosario-Acoculco horst (García-Palomo et al., 2017). It lies within the structure of the older Tulancingo Caldera (~32 km in diameter, activity between 3.0 and 2.7 Ma; López-Hernández et al., 2009). The caldera is associated with 1.7–0.24 Ma eruptive events, the last of which generated the Acoculco andesitic ignimbrite and resulted in the caldera collapse (López-Hernández et al., 2009; Calcagno et al., 2018). Post-calderic eruptive events, resulting in scoria cones and basaltic lava flows, lasted until 0.06 Ma (Sosa-Ceballos et al., 2018). The Acoculco Caldera basement, from base to top, is formed by granite, Jurassic sandstones, Cretaceous calcarenites, limestones and marbles of the Sierra Madre Oriental, the Zacatlan-Chignahuapan basalt plateau and pre-calderic domes and lavas (10-3 Ma) (Campos-Enríquez et al., 2003; López-Hernández et al., 2009; Canet et al., 2015a; Calcagno et al., 2018; Avellán et al., 2018). The granitic intrusion, associated with at least four magma bodies at depths of 1 to > 2 km (Calcagno et al., 2018), has a presumed Late Cretaceous age since it produced a metamorphic aureole of marbles and skarns within the Cretaceous limestones (Sosa-Ceballos et al., 2018), suggesting temperatures above 350 °C (López-Hernández et al., 2009). Late-stage intrusions are represented by aplite dikes, cutting the skarn but not the overlying volcanic rocks (López-Hernández et al., 2009). Some preliminary studies performed by the National Mexican Power Company (Comisión Federal de Electricidad, CFE), identified Acoculco Caldera as a potential candidate for Enhanced Geothermal Systems (EGS) technology. Following this indication, the basement was regarded as a possible location for a geothermal reservoir (Hot Dry Rock Geothermal System, HDR), also considering that the overlying volcanites associated with the caldera are intensely hydrothermalized (López-Hernández et al., 2009; Pulido et al., 2010; Peiffer et al., 2014, 2015; Garcia-Valles et al., 2015; Canet et al., 2015b). DC Schlumberger surveys (Palma, 1987) and geochemical characterization of some local spring fluids (Tello-Hinojosa, 1986, 1987) provided the location of the first exploration borehole (i.e. EAC-1 well, drilled in 1995) in the Los Azufres area, where cold bubbling pools and extensive areas of argillic alteration are present (López-Hernández et al., 2009). Downhole measurements, analyses of samples and temperature logs (> 300 °C at \sim 2000 m depth) are reported in Tello-Hinojosa (1994), Palma (1995), García-Estrada (1995), Gama et al. (1995) and López-Hernandez and Castillo-Hernandez (1997). Despite the high geothermal gradient (three times the average for TMVB), a pure conductive heat transfer regime resulted from the downhole temperature profiles (López-Hernández et al., 2009; Canet et al., 2015a). Permeable zones

with warm water and significant amount of gas were intercepted at shallow depth, nevertheless a deep water reservoir was not found (López-Hernández and Castillo-Hernández, 1997; López-Hernandez et al., 2009). Another well (EAC-2), distant from EAC-1 ~500 m to the NE, was drilled in 2008 (Viggiano-Guerra et al., 2011) and the active gas bubbling area of Alcaparrosa was also proposed for a possible future drilling of the EAC-3 well. Based on samples extracted from EAC-1 and EAC-2, Canet et al. (2010) identified two major zones of alteration in the subsurface rocks, i.e. a shallow one extending to 500-600 m depth with ammonium-argillic alteration of the volcanic rocks indicating temperatures > 200 °C, and a deeper one down to \sim 1000 m depth with an alteration assemblage of epidote-calcite-chlorite suggesting temperatures of ~240 °C. At greater depth, a calc-silicate paragenesis with wollastonite, garnet and diopside in marbles and skarns suggests temperatures above 350 °C (López-Hernández et al., 2009). Surficial rocks are characterized by a widespread silicic alteration, whilst advanced argillic alteration occurs principally near the gas manifestations of Los Azufres and Alcaparrosa (Canet et al., 2015a, 2015b). The composition of cold gas samples at Los Azufres and Alcaparrosa is dominated by CO₂, followed by H₂S. Accordingly, the waters discharging in these areas are acidic and SO₄-rich due to dissolution of H₂S (and subsequent oxidation to H₂SO₄ at shallow levels) and are strongly different from the calcium-bicarbonate thermal waters discharged outside the Acoculco Caldera (e.g. Chignahuapan at SE) and the sodium-bicarbonate waters at the N periphery of the caldera and near Los Azufres (López-Hernández et al., 2009).

Although the AGF is considered since many years as a potential site for EGS technology, the possible occurrence of hot fluids at depth close the central sector of the Acoculco Caldera is still debates. Also, the identification of the origin and kinematic of regional and local faults/fracture systems represent another open question. Even if various geochemical studies were performed in the AGF for physico-chemical characterization of known natural manifestations, before the GeMex project no detailed investigation regarding the identification of source areas and description of fluid flow-path were never been performed. It is well known that rainfall is high in the Tulancingo-Acoculco area. At high altitude the average annual precipitation is about 1000 mm, whereas in the surrounding plains is about 600 mm (Lopez-Hernandez, 2009). Therefore, Acoculco's surrounding areas could represent the infiltration system. These represent two of the main topics of the investigation performed in Acoculco in the framework of the Task 4.3.

Chapter 2

WATER AND GAS GEOCHEMISTRY

2.1 Introduction

The AGF was studied in the framework of the task 4.3 with the same goals and approach used for Los Humeros. Regarding the locations of possible cold springs and wells located around AGF, before GeMex no large database was present. However, thanks to the collaboration and support with Mexican partners (Cicese Ensenada, UMSNH, University of Guanajuato, CFE) it was possible to obtained a suitable distribution of sampling points and measurements. Sampling trip was performed in January 25th-February 06th 2018, in which 45 water and 3 dry gas samples were collected, and 418 measurements of CO₂ diffused from soils were carried out.

2.2 Waters: Sampling, field measurements and laboratory analyses

Water samples from 45 thermal and cold discharges, located inside and outside the Acoculco Caldera (Fig. 2.1), and free gas samples from three bubbling pools (one at Los Azufres and two at Alcaparrosa) were collected. Sampling and in-situ measurements (temperature, electrical conductivity, pH, total alkalinity, flow rate and dissolved oxygen) of cold and thermal waters from springs and wells were performed by portable devices. Sampled fluids were analysed in the IGG laboratories in Pisa and Florence (Italy). Collected samples were also analysed in laboratories of the CICESE (Ensenada). Three non-filtered and three filtered (0.45 μ m) and acidified (two with ultrapure HCl and one with ultrapure HNO₃, respectively) water samples were collected in polyethylene bottles for the analysis of anions, isotopes of water (δ D-H₂O and δ ¹⁸O-H₂O), SiO₂, cations, NH₄ and trace species, respectively. Total alkalinity was measured directly in the field and then checked in the lab by acidimetric titration (AT) with 0.01 N HCl using a Metrohm 794 automatic titration unit. The analytical error for AT analysis was \leq 5%. The main anions (Cl⁻, SO₄²⁻, NO₃⁻, Br⁻, and F⁻) and cations (Na⁺, K⁺, Ca²⁺, Mg²⁺) were analyzed by ion chromatography (IC) using Metrohm 761 and Metrohm 861 chromatographs, respectively. Instruments performance are the same as for fluids analyses of Los Humeros.

Figure 2.1 – Location of water samples from thermal and cold discharges of the Acoculco campaign.

2.2.1 Hydrogeochemical classification and binary plots

As regards the water samples, temperature and pH, chemical composition (main and trace solutes, in mg/L), TDS (total dissolved solids, in mg/L) and δ D-H₂O and δ ¹⁸O-H₂O (‰ V-SMOW) values are listed in Table A1-A (-A stands for Acoculco). Outlet temperatures ranging from 7.5 to 48.3 °C, while pH and TDS values varied respectively from 2.08 and 8.64 and between 94 and 1602 mg/L (see figure 2.2.1). Springs in Alcaparrosa and Los Azufres are clearly affected by dissolution of H₂S and subsequent oxidation to H₂SO₄, which decrease pH values. During the sampling trip, smell of H₂S was reported also close to other cold springs (AC-25, AC-47 and AC-48). H₂S source is located within the Acoculco Caldera (López-Hernández et al., 2009; Peiffer et al., 2014) and its presence is ascertained by the chemical analysis of the sampled gases (Table A3-A).

Figure 2.2.1 - Binary plot Temperature vs. pH of water samples of the Acoculco campaign. Samples from Los Azufres, Alcaparrosa and Chignahuapan are also highlighted in blue, green and red, respectively.

As for Los Humeros, the hydrogeochemical classification was performed using the LL-diagrams (Langelier-Ludwig, 1942). Variable compositions from $Ca^{2+}-SO_4^{2-}$ or $Na^+-SO_4^{2-}$ (acid or near-acid waters from the Acoculco Caldera, e.g. Los Azufres and Alcaparrosa) to $Ca^{2+}-HCO_3^-$ or $Na^+-HCO_3^-$ (especially from outside the caldera, e.g. Chignahuapan) were observed (Figs. 2.2.2-2.2.4). Moving away from the caldera, the waters tend to lose this contribution and the compositions become near-neutral calcium-sodium-bicarbonate, also due to the solubility difference between H₂S and CO₂, with the latter more able to migrate towards the periphery of the system (Peiffer et al., 2014). The chemistry of the Na^+ -HCO₃⁻ waters is due to water-rock interaction processes involving Na-silicates of the volcanic rocks of the study area. On the other hand, most of the Ca^{2+} -HCO₃⁻ samples (e.g. those from the Tulancingo area) are originated from meteoric water interacting with carbonates, which extensively outcrop around the AGF (e.g. in the Sierra Madre Oriental).

Figure 2.2.2 – LL_{HCO3} diagram for collected waters in AGF.

Figure 2.2.3 - LL_{CL} diagram for collected waters in AGF

Figure 2.2.4 – LL_{SO4} diagram for collected waters in AGF.

From the correlation plot HCO_3 vs $Cl+SO_4$ (figure 2.2.5 left) and Na vs K+Ca+Mg (figure 2.2.5 right), for collected thermal waters it is evident that HCO_3 and (Na+Ca), respectively are the most abundant anions and cations. Water from springs in Alcaparrosa and Los Azufres show high SO₄ concentration due to H₂S dissolution and its oxidation to H₂SO₄. Same feature characterizes also three cold springs samples (AC25, AC47 and AC48), where smell of H₂S was recognized during sampling activities.

Figure 2.2.5 - Correlation plot HCO₃ vs Cl+SO₄ (left) and Na vs K+Ca+Mg (right) for collected water samples in AGF.

The acid samples AC-05, AC-06 and AC-07 from Los Azufres are also characterized by the highest contents of B and NH_4^+ , testifying an input of hydrothermal fluids and dissolution of rocks/sediments at the surface close to the discharge points (see figure 2.2.5 left). The calcium-bicarbonate waters from Chignahuapan showed some features typical for hydrothermal fluids: i) relatively high TDS values; ii) relatively high temperature; iii) high NH_4^+ , B and Li⁺ concentrations (Table 2, Fig. 2.2.5 right). The relatively high concentrations of HCO_3^- in Chignahuapan waters are likely controlled by CO_2 dissolution. Water from cold springs and wells are characterized by lower values of B and Li.

Figure 2.2.6 - Correlation plot B vs Cl (left) and Li vs Cl (right) for collected samples in the AGF.

2.2.2 Dissolved carbon dioxide

Taking into account the very low flux of CO_2 diffused from soil (see paragraph 2.4) and the goal of the task 4.3 regarding the identification of faults/fracture at local scale, which can be used by deep

gases as vertical permeability, the dissolved CO_2 was calculated for waters collected in the AGF. The same approach for LHGF was used (Solveq numerical code, with soltherm98 database - Spycher N, Reed M.H., 1998). The results are shown in table A3_A (in appendix). Values for P_{CO2} are generally less than 0.1 bar, a typical value for decomposition of organic matter and/or soil respiration. In thermal waters of Chignahuapan and Banos Chino higher values commonly found in hydrothermal systems were calculated (respectively 0.28 and 0.24 bars). Water samples located in the central sector of the Acoculco caldera (AC06, AC07, AC12, AC13, AC18, AC19 and AC25) are characterized by medium values. It could be interpreted, at least in part, as the results of CO2-rich gas rising from depth and interacting with circulating water at shallow levels (e.g. AC6 and AC7 are close to drilled boreholes EAC1 and EAC2). The geographical distribution of the dissolved CO₂ does not evidence any correlation with faults/fractures alignments.

Figure 2.2.7 – Map of dissolved P_{CO2} calculated for collected waters in AGF. Data are expressed as LogCO₂-fugacities.

2.2.3 Stable isotopes of water

The δ^2 H and δ^{18} O values of H₂O for the water samples collected in the AGF and its surrounding are shown in the correlation diagram of Figure 2.2.8, together with the worldwide meteoric water line (WMWL - δ^2 H = 8· δ^{18} O+10, Craig, 1961). As for reference, a meteoric water line (MWL) defined by Perez Quezadas et al. (2015) is also reported, even if it was defined using precipitation samples collected along a transect from the Port of Veracruz to Cofre de Perote. Therefore, it represent a local meteoric water line for the upwind Sierra Madre Oriental area and it is not specific for Acoculco area.

Figure 2.2.8 - Correlation diagram of δ^2 H-H₂O vs. δ^{18} O-H₂O for the water samples collected in the AGF and its surroundings. The World Meteoric Water Line (WMWL – Craig, 1961) and Meteoric Water Line (MWL) by Perez et al. (2015) are also shown.

All samples plot preferentially along the WMWL, even if some of them are shifted to the right. This scatter of isotope values could be due to i) occurrence of evaporation processes, ii) water-rock interaction processes at the surface, combined or not with interaction with deep CO₂ (Chiodini et al., 2000). In fact, various samples are characterized by low pH values (evidenced in the figure 2.2.8 as acid springs) and presence of CO₂-rich gases at the discharge points. For what concerns the thermal waters sampled during this work, they plot close to the WMWL and are, therefore, of meteoric origin. The thermal spring of Banos Chino is the isotopically heavies water collected during this work and probably reflects a less altitude of infiltration. On the other hand, Banos Chino is characterized by a lower altitude for the discharge (2050 m.a.s.l.). Just two cold springs (AC20 and AC48) have the same isotopic signature, but they are probably affected by other processes: during the field trip a smell of H₂S was reported and one of this (AC20) was collected during rain event.

In general, mean values of δ^2 H and δ^{18} O for cold water collected in the AGF (excluding the acid waters) are similar to those for LHGF and this feature points out to the regionalization of the meteoric component.

2.3 Natural gas emissions

2.3.1 Sampling and laboratory measurements

Free gases at Los Azufres and Alcaparrosa were sampled using a plastic funnel up-side-down positioned above the bubbling sites and connected through a silicon tube to a pre-evacuated glass bottle equipped with a thorion valve (Vaselli et al., 2006) or to 40 mL gas vials equipped with a rubber septum instead of the glass bottle. The gas fraction (CO₂, H₂S, N₂, Ar, O₂ and CH₄) was analyzed by gas chromatography (GC) using a Shimadzu 15A instrument equipped with a Thermal Conductivity Detector (TCD). Argon and O₂ were separately analyzed using a Thermo Focus gas chromatograph equipped with a 30 m long capillary molecular sieve column and a TCD. Methane was determined by using a Shimadzu 14A gas chromatograph equipped with a Flame Ionization Detector (FID) and a 10 m long stainless-steel column packed with Chromosorb PAW 80/100 mesh coated with 23% SP 1700 (Vaselli et al. 2006). The analytical error for the GC analysis was $\leq 10\%$. The carbon isotopes in CO₂ (expressed as δ^{13} C-CO₂ ‰ vs. V-PDB) were determined by using a Finnigan Delta Plus mass spectrometer (MS), after extracting and purifying CO_2 by using liquid N_2 and N_2 -trichloroethylene cryogenic traps (Evans et al. 1998; Vaselli et al. 2006). Internal (Carrara and S. Vincenzo marbles) and international (NB18 and NBS19) standards were used for estimating the external precision. Analytical uncertainty and reproducibility were $\pm 0.05\%$ and $\pm 0.1\%$, respectively. The carbon isotopes in CH₄ (expressed as δ13C-CH4 ‰ vs. V-PDB) were measured by Cavity Ring-Down Spectroscopy (CRDS) using a Picarro G2201-i Analyzer. The errors of the CRDS analysis was <1 ‰. In order to avoid interferences, the instrument inlet line was equipped with (i) a Drierite trap and (ii) a copper trap for the removal of water vapor and H₂S, respectively. According to the operative ranges of the Picarro G2201-i instrument (up to 500 ppm), gas samples were diluted using a N₂-O₂-Ar gas mixture. The locations of the collected samples are shown in the map of figure 2.3.1, whereas the chemical and isotopic data are included in table A4_A (in appendix).

Figure 2.3.1 – Location map of dry gas samples collected from natural manifestation in AGF. Drilled boreholes EAC1 and EAC2 are also shown.

2.3.2 Chemical classification

For Alcaparrosa samples (ALC1 and ALC2), the N₂/Ar ratios are higher than that of atmospheric air (N₂/Ar = 83.5 – figure 2.3.2 left). Dry gas sample of Los Azufres plots along the line mantle-air, suggesting dilution processes with air of a deep component. In fact all gas samples show the N₂/Ar ratios higher than that of water saturated air (N₂/Ar = 38), possible indicating a deep fluids input. Los Azufres shows a different N₂/CH₄ ratio compared to Alcaparrosa samples, probably reflecting different redox conditions. This finding seems to be confirmed by the δ^{13} C-CH₄ values, which are more negative than that for Alcaparrosa. However, all δ^{13} C-CH₄ values are consistent with those typically related to thermogenic processes involving pre-existing organic matter (e.g. Schoell, 1980, 1988; Whiticar et al., 1986; Whiticar, 1999), thus CH₄ probably originated at reducing hydrothermal conditions. The δ^{13} C-CO₂ values (Table 3) of the free gas samples are significantly less negative than those typically produced by biogenic processes (δ^{13} C-CO₂ ≤ -20 ‰ vs. V-PDB; e.g. O'Leary, 1988; Hoefs, 2009) and are consistent with the isotopic value measured by Peiffer et al. (2014) and in the range of gases from mantle degassing (from -9 to -2 ‰ vs. V-PDB; e.g. Javoy et al., 1982; Rollinson, 1993; Hoefs, 2009).

Figure 2.3.2 – Triangular plots CO₂-Ar-N₂ (left) and CH₄-N₂-CO₂ (right) for dry gas samples collected in AGF.

Chapter 3 Diffuse degassing 3.1 Field measurements

Before the field trip, some areas of interest in which to perform diffuse degassing measurement were selected according to the indication coming from geologists involved in the project. Among all the areas affected by tectonic features, one corresponding to the rectangle A1 (Fig. 3.1) was targeted for soil diffuse CO₂ degassing. In addition, another three areas (Los Azufres, Alcaparrosa and "Lagunilla") characterized by gas emission or argillic alteration of the soil were also investigated (Fig. 3.1). However, once in the field, the grid of the measurement points was adapted to the local conditions (i.e. presence of swamp, mud pools, vegetation, villages). The ϕ CO₂ values were measured at 418 sites within the Acoculco Caldera using the Accumulation Chamber (AC) method (e.g. Chiodini et al., 1996, 1998, 2001; Gerlach et al., 2001; Cardellini et al., 2003). All measurements performed in the field are included in the table A5_A (in appendix).

Figure 3.1 – The 418 sites of ϕCO_2 measurement within the Acoculco Caldera.

The instrumental apparatus used for the AC measurements consisted of: 1) a metal cylindrical vase (the chamber) with a basal area of 200 cm² and an inner volume of 3060 cm³, 2) an Infra-Red (IR) spectrophotometer (Licor[®] Li-820). A low-flow pump (20 mL s⁻¹) conveyed the gas from the chamber positioned above the soil to the IR that provided continuous CO₂ measurements (up to 20,000 ppm), with an accuracy of 4%. The soil gas was re-injected into the chamber to minimize the disturbance effects due to changes of barometric conditions. The ϕ CO₂ values were computed on the basis of the measured CO₂ concentrations over time (dC_{CO2} dt⁻¹), using a palmtop computer connected with the IR through an analog-digital (AD) converter and equipped with a software, according to the following equation:

(1)
$$\phi CO_2 = cf \times dC_{CO2} dt^{-1}$$

The instrumentation was calibrated by using an induced flux in the laboratory and calculating the appropriate conversion factor (cf) between the native unit ppm/sec to the user unit (i.e. mol m⁻² day⁻¹). The cf factor was computed as the slope of the linear best-fit line of ϕ CO₂ vs. dC_{CO2} dt⁻¹. Finally, CO₂ flux was obtained as mol m⁻² day⁻¹ as a function of temperature and atmospheric pressure, which were measured in the field during the measurements.

3.2 Results and discussion

The ϕ CO₂ values range from 0.12 to 48.9 g m⁻² day⁻¹, whereas the average, median and standard deviation values were 12.6, 11.8 and 7.4 g m⁻² day⁻¹, respectively. The air temperature and pressure values varied from 1.5 to 20 °C and from 721 to 735 mbar, respectively.

To estimate the total amount of the released CO₂ fluxes, the measured data were processed using a classical graphical-statistical method (Sinclair, 1974, 1991). Through this approach, and not considering the highest flux outliers, six main flux populations were found within the area that includes the central polygon A1 and Los Azufres. Flux measurements in each previous areas have a normal distribution. This polymodal distribution is very likely due to the various types of soil encountered within the area, from the soft and marshy soil to the rocky substrate. Consequently, the database was divided into 6 classes and it was plotted together with the traces of the main known regional faults/fractures (Fig. 3.2). This map shows a general scatter of CO_2 flux values with no appreciable differences, crossing the main faults/fractures alignment. Just in the south-west side, in which the two main faults/fractures systems meet, a group of higher values seems to be localized. However, also in this area, CO_2 fluxes are very low and the presence of the village could affect some of the measurements.

Figure 3.2 - Dot-map of the CO₂ flux values for the polygon A1 and Los Azufres areas. Traces of main regional faults/fractures are also reported.

Regarding the Alcaparrosa and "Lagunilla" areas, excluding outliers, the data distribution was normal. Thus, 3 classes of values were sufficient to represent the dot-maps (Fig. 3.3).

Figure 3.3 – Dot-maps of the CO₂ flux values for Alcaparrosa and "Lagunilla" areas.

Summing up, the ϕ CO₂ results indicate that:

- CO₂ flux anomalies depending on preferential tectonic lines were not clearly observed;
- low CO₂ fluxes were measured (ranging between 0.12 and 48.9 g m⁻² day⁻¹), implying that most data were associated with soil respiration and reflecting low permeability conditions, at least at shallow levels.

The causes of these low flux values are likely due to the presence of large areas characterized by swamp and to the climate conditions during the survey, favoring a mostly water-saturated soil. However, similar measurements performed during the dry season gave the same indications (Peiffer et al., 2014).

According to the Sichel's t estimator (David, 1977), the total diffuse CO₂ outputs at the area of central polygon A1-Los Azufres, Alcaparrosa and "Lagunilla" were estimated in ~27, 2.3 and 0.1 t day⁻¹, respectively.

3.3 Conclusions

Sampling campaigns was performed in AGF in January 25th-February 06th 2018, in which 45 water and 3 dry gas samples were collected, and 418 measurements of CO₂ diffused from soils were carried out. Sampling trip was performed in collaboration with CICESE (Ensenada), Guanajuato University and Michoacán University (UMSNH). Particular attention was focused on the selection of "target" areas in which to perform sampling of cold springs, providing information regarding the origin of fluids.

Chemical characterization of samples collected from cold springs and wells suggest an interaction between meteoric water and different rock types. The chemistry of the Na⁺-HCO₃⁻ waters is due to water-rock interaction processes involving Na-silicates of the volcanic rocks of the study area. Most of the Ca²⁺-HCO₃⁻ samples (e.g. those from the Tulancingo area) are originated from meteoric water interacting with carbonates, which extensively outcrop around the AGF (e.g. in the Sierra Madre Oriental). Acid waters enriched in SO₄ are originated by dissolution of deep H₂S, followed by the oxidation to H₂SO₄ at surface levels: in fact, this kind of springs are located close to or at the discharge point of natural gas manifestations (Los Azufres and Alcaparrosa sites). Dissolved CO₂ calculated in collected water samples doesn't show correlations with main alignments of regional faults/fractures. Just in Chignahuapan and Banos Chino thermal waters the dissolved CO₂ shows higher values, but anyway in the typical range of variation for hydrothermal systems.

For what concern the stable isotopic composition, cold waters from springs and wells follow the WMWL, even if some of them are shifted on the right. This scatter of isotope values could be due to i) occurrence of evaporation processes, ii) water-rock interaction processes at the surface, combined or not with interaction with deep CO₂. In fact, various samples are characterized by low pH values and presence of CO₂-rich gases at the discharge points. Mean values of δ^2 H and δ^{18} O for cold water collected in the AGF (excluding the acid waters) are similar to those for LHGF and this feature point out to the regionalization of the meteoric component. Natural gas emissions sampled at Los Azufres and Alcaparrosa sites represent a mixing between deep component and surface one. Dry gas sample of Los Azufres suggest dilution processes with air of a deep component. In general, all gas samples show the N₂/Ar ratios higher than that of water saturated air (N₂/Ar = 38), possible indicating a deep fluids input. Measurements of CO₂ flux diffused from the soil show low values, typically associated to soil respiration. In general, no clear correlation between geographical distribution of higher values of CO₂ fluxes reach higher values.

Acknowledgements

We want to thank the CFE staffs from Los Humeros and from Morelia for their collaboration, effort and helpful discussions before and during field trips. Finally, we are very grateful to Aída López Hernández, scientific coordinator of the GEMEX project, for her support during all phases of scientific activities.

References

Avellán, D.R., Macías, J.L., Layer, P.W., Cisneros, G., Sánchez-Núñez, J.M., Gómez-Vasconcelos, Pola, A., Sosa-Ceballos, G., García-Tenorio, F., Reyes-Agustín, G., Osorio-Ocampo, S., García-Sánchez, L., Mendiola, F., Marti, J., López-Loera, H., and Benowitz, J.: Geology of the Late Pliocene – Pleistocene Acoculco caldera complex, eastern Trans-Mexican Volcanic Belt (México). J. Maps, https://doi.org/10.1080/17445647.2018.153107, 2018.

Calcagno, P., Evanno, G., Trumpy, E., Gutiérrez-Negrín, L.C., Macías, J.L., Carrasco-Núñez, G., and Liotta, D.: Preliminary 3-D geological models of Los Humeros and Acoculco geothermal fields (Mexico) – H2020 GEMex Project. Adv. Geosci., 45, 321-333, https://doi.org/10.5194/adgeo-45-321-2018, 2018.

Campos-Enríquez, J.O., Alatriste-Vilchis, D.R., Huizar-Álvarez, R., Marines-Campos, R., Alatorre-Zamora, M.A.: Subsurface structure of the Tecocomulco subbasin (northeastern Mexico basin), and its relationship to regional tectonics. Geofis. Int., 42, 3–24, 2003.

Canet, C., Arana, L., González-Partida, E., Pi, T., Prol-Ledesma, R.M., Franco, S.I., Villanueva-Estrada, R.E., Camprubí, A., Ramírez-Silva, G., and López-Hernández, A.: A statistics-based method for the short-wave infrared spectral analysis of altered rocks: an example from the Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt. J. Geochem. Explor., 105, 1–10, 2010.

Canet, C., Trillaud, F., Prol-Ledesma, R.M., González-Hernández, G., Peláez, B., Hernández-Cruz, B., and Sánchez-Córdova, M.M.: Thermal history of the Acoculco geothermal system, eastern México: insights from numerical modeling and radiocarbon dating. J. Volcanol. Geotherm. Res., 305, 56–62, 2015a.

Canet, C., Hernández-Cruz, B., Jiménez-Franco, A., Pi, T., Peláez, B., Villanueva-Estrada, R.E., Alfonso, P., González-Partida, E., and Salinas, S.: Combining ammonium mapping and short-wave infrared (SWIR) reflectance spectroscopy to constrain a model of hydrothermal alteration for the Acoculco geothermal zone, Eastern Mexico. Geothermics, 53, 154–165, 2015b.

Cardellini, C., Chiodini, G., Frondini, G.: Application of stochastic simulation to CO₂ flux from soil: mapping and quantification of gas release. J. Geophys. Res. 108, 2425, doi:10.1029/2002JB002165, 2003.

Chiodini, G., Frondini, F., Raco, B.: Diffuse emission of CO₂ from the Fossa crater, Vulcano Island. Bull. Volcanol. 58, 41–50, 1996.

Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L.: Soil CO₂ flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543–552, 1998.

Chiodini G., Allard P., Caliro S., Parello F.: ¹⁸O exchange between steam and carbon dioxide in volcanic and hydrothermal gases: Implications for the source of water. Geochimica et Cosmochimica Acta, Vol.64(14), 2479-2488, 2000.

Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., Ventura, G.: CO₂ degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J. Geophys. Res. 106, 16213–16221, doi:10.1029/2001JB000246, 2001.

Craig, H.: Isotopic variations in meteoric waters. Science, 133, 1702–1703, 1961.

David, M.: Geostatistical Ore Reserve Estimation. Elsevier Sci., New York, 1977.

Gama, V.R., Martínez, E.I., Cedillo, R.F.: Informe geológico del pozo EAC-1. CFE-GPG internal report RG/HU/02/95, 26 p, 1995.

García-Estrada, G.H.: Comentarios sobre el modelo gravimétrico en Acoculco, Puebla. CFE-GPG internal report GF-AC-009/95, 10 p, 1995.

García-Palomo, A., Macías, J.L., Jiménez, A., Tolson, G., Mena, M., Sánchez-Núñez, J.M., Arce, J.L., Layer, P.W. Santoyo, M.A., and Lermo-Samaniego, J.: NW-SE Pliocene-Quaternary extension in the Apan-Acoculco region, eastern Trans-Mexican Volcanic Belt. J. Volcanol. Geoth. Res., 349, 240–255, 2017.

Garcia-Valles, M., Pi, T., Alfonso, P., Canet, C., Martínez, S., Jiménez-Franco, A., Tarrago, M., and Hernández-Cruz, B.: Kaolin from Acoculco (Puebla, Mexico) as raw material: Mineralogical and thermal characterization. Clay Miner., 50, 405–416, 2015.

Gerlach, T.M., Doukas, M.P., McGee, K.A., Klesser, R.: Soil efflux and total emission rates of magmatic CO₂ at the Horseshoe Lake tree kill, Mammoth Mountain California, 1995–1999. Chem. Geol. 177, 85–99, 2001.

Guevara, M., Santoyo, E., Perez-Zarate, D., and Almirudis, E.: Diffuse CO₂ Degassing to Study Blind Geothermal Systems: The Acoculco, Puebla (Mexico) Case Study. World Academy of Science, Engineering and Technology, 11(3), 641 – 645, 2017.

Hoefs, J.: Stable isotope geochemistry, 6th edn. Springer, Berlin, p. 288, 2009.

Javoy, M., Pineau, F., Allegre, C.J.: Carbon geodynamic cycle. Nature, 300 (5888), 171–173, 1982.

Langelier, W.F., and Ludwig, H.F.: Graphical methods for indicating the mineral character of natural waters. Journal (American Water Works Association), 34(3), 335-352, 1942.

López-Hernandez, A., and Castillo-Hernandez, D.: Exploratory Drilling at Acoculco, Puebla, México: A Hydrothermal System With Only Nonthermal Manifestations, (No. CONF-971048). Geothermal Resources Council Transactions 21, Davis, CA (United States), 1997.

López-Hernández, A., García-Estrada, G., Aguirre-Díaz, G., González-Partida, E., Palma-Guzmán, H., and Quijano-León, J.L.: Hydrothermal activity in the Tulancingo–Acoculco Caldera Complex, central Mexico: Exploratory studies. Geothermics, 38, 279–293, 2009.

O'Leary, M.H.: Carbon isotopes in photosynthesis. BioScience, 38, 328-336, 1988.

Pulido, C.L., Armenta, M.F., and Silva, G.R.: Characterization of the Acoculco Geothermal Zone as a HDR System. GRC Transactions, 34, 369–372, 2010.

Palma, G.S.H.: Estudio geoeléctrico en la zona geotérmica de La Alcaparrosa-Los Azufres (Acoculco), Puebla, Interpretación cualitativa. CFE-GPG internal report 16/87, 12 p., 1987.

Palma, G.S.H.: Análisis geoeléctrico para la ubicación de pozos exploratorios en el área geotérmica de Acoculco, Puebla. CFE-GPG internal report GF-AC-021/95, 21 p, 1995.

Peiffer, L., Bernard-Romero, R., Mazot, A., Taran, Y.A., Guevara, M., and Santoyo, E.: Fluid geochemistry and soil gas fluxes (CO₂–CH₄–H₂S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico. J. Volcanol. Geoth. Res., 284, 122–137, 2014.

Peiffer, L., Wanner, C., and Pan, L.: Numerical modeling of cold magmatic CO₂ flux measurements for the exploration of hidden geothermal systems. J. Geophys. Res.-Sol. Ea., 120, 6856–6877, https://doi.org/10.1002/2015JB012258, 2015.

Pérez Quezadas, J., Cortés Silva, A., Inguaggiato, S., del Rocío Salas Ortega, M., Cervantes Pérez, J., Michael Heilweil, V.: Meteoric isotopic gradient on the windward side of the Sierra Madre Oriental area, Veracruz – Mexico. Geofísica Internacional, 54(3), 267-276, 2015.

Rollinson, H.: Using Geochemical Data. Longman, London, UK, p. 352, 1993.

Schoell, M.: The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta, 44, 649–661, 1980.

Schoell, M.: Multiple origins of methane in the Earth. Chem. Geol., 71, 1–10, 1988.

Sinclair, A.J.: Selection of thresholds in geochemical data using probability graphs. J. Geochem. Expl., 3, 129-149, 1974.

Sinclair, A.J.: A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited. J. Geochem. Expl., 41, 1-22, 1991.

Sosa-Ceballos, G., Macías, J.L., Avellán, D.R., Salazar-Hermenegildo, N., and Boijseauneau-López, M.E.: The Acoculco Caldera Complex magmas: genesis, evolution and relation with the Acoculco geothermal system. J. Volcanol. Geoth. Res., 358, 288–306, 2018.

Spycher N, Reed M.H. (1998). SOLVEQ: A Computer Program for Computing Aqueous Mineral Gas Equilibria. Department of Geological Sciences, University of Oregon, Eugene, OR., 28 pp.

Tello-Hinojosa, E.: Geoquímica de la zona geotérmica de la caldera de Acoculco, Puebla. CFE-GPG internal report 34/86, 15 p, 1986.

Tello-Hinojosa, E.: Composición química e isotópica del agua de los manantiales de Acoculco, Puebla. CFE-GPG internal report 23/87, 7 p, 1987.

Tello-Hinojosa, E.: Química de los fluidos hidrotermales de la zona geotérmica de la caldera de Acoculco, Puebla. CFE-GPG internal report GQ-013-94, 14 p, 1994.

Vaselli, O., Tassi, F., Montegrossi, G., Capaccioni, B., Giannini, L.: Sampling and analysis of volcanic gases. Acta Volcanologica 18, 65–76, 2006.

Viggiano-Guerra, J.C., Flores-Armenta, M., and Ramírez-Silva, G.R.: Evolución del sistema geotérmico de Acoculco, Pue., México: un estudio con base en estudios petrográficos del pozo EAC-2 y en otras consideraciones. Geotermia 24 (1), 14–24, 2011.

Whiticar, M.J., Faber, E., Schoell, M.: Biogenic methane formation in marine and freshwater environments: CO₂ reduction vs. acetate fermentation — isotopic evidence. Geochim. Cosmochim. Acta, 50, 693–709, 1986.

Whiticar, M.J.: Carbon and hydrogen isotope systematic of bacterial formation and oxidation of methane. Chem. Geol., 161, 291–314, 1999.

APPENDIX

Table A1_A	 Main physico-chemical parameters 	s measured in the f	ield for collecte	d water samp	les (Acoculo	co). Total alkalin	ity was dete	rmined on the fi	eld by acid-ba	se titration.	DO stands for Diss	olved Oxygen.
ID	Station	Date, hour	Туре	X(m)	Y(m)	Altitude (masl)	Depth (m)	Flow (L/min)	Temp. (°C)	рН	Cond. (µS/cm)	DO (mg/L)
AC-01	Auditorio Chignahuapan	25/01/18, 10:07	cold spring	604318	2193645	2261	-	28.2	17.3	6.95	287	7.08
AC-02	El Ameyal	25/01/18, 11:39	cold spring	605912	2194837	2216	-	4.8	15.6	7.93	236	7.46
AC-03	Rio Zacatlan	25/01/18, 11:50	river	605912	2194837	2216	-	51000	18.7	8.81	1094	7.78
AC-04	Baño Chino	25/01/18, 12:37	hot spring	606132	2195045	2050	-	48	32.1	6.46	1590	1.09
AC-05	Pozo 1 CFE	27/01/18, 10:51	cold spring	589590	2203103	2850	-	-	16.2	4.68	543.4	3.23
AC-06	Pozo 1 CFE	27/01/18, 11:22	cold spring	589590	2203103	2850	-	-	18.1	4.77	553	4.62
AC-07	Pozo 1 CFE	27/01/18, 12:15	cold spring	589590	2203103	2850	-	0.3	15.6	5.57	522.7	2.61
AC-08	Alcaparrosa	27/01/18, 15:05	cold spring	589676	2205110	2828	-	-	11	2.08	3579	2.95
AC-09	Alcaparrosa	27/01/18, 15:56	cold spring	590088	2204870	2844	-	3	11.1	2.6	24.2	3.29
AC-10	Pozo 1 CFE	27/01/18, 17:04	cold spring	598406	2202965	2842	-	24.66	19.3	3.53	764	3.86
AC-11	Presilla	28/01/18, 09:44	cold spring	587682	2201300	2870	-	10.8	15.2	7.57	355.3	6.81
AC-12	Rabanillo	28/01/18, 10:19	cold spring	587041	2201626	2900	-	4.8	11.5	6.64	152.9	6.89
AC-13	La Agüitongo	28/01/18, 11:13	cold spring	586209	2203240	2826	-	7.8	10.1	6.94	336.2	4.95
AC-14	La Agüitongo	28/01/18, 12:57	cold spring	585951	2203344	2813	-	19.6	14.5	6.77	494.2	6.23
AC-15	Sn. Francisco Terrerillos	29/01/18, 11:20	cold spring	588020	2201347	2854	-	2.52	11	7.4	463.2	6.78
AC-16	El Cristo	29/01/18, 11:21	cold spring	585471	22022522	2758	-	3	9.9	6.33	553.6	6.71
AC-17	El Cristo	29/01/18, 13:45	cold spring	585404	2202493	2803	-	18.6	11	5.88	434.8	6.22
AC-18	Ejido Sn. Jose Corral Blanco	29/01/18, 12:49	cold spring	584688	2202116	2791	-	-	7.5	6.38	127.6	5.16
AC-19	El Cazadero	29/01/18, 13:50	cold spring	583645	2201395	2790	-	3.92	11.2	7.22	396.8	2.57
AC-20	Rancho del Encanto	29/01/18, 15:30	cold spring	584441	2202511	2770	-	480	7.8	7.46	173.7	8.2
AC-21	Baño Chino	30/01/18, 9:45	hot spring	606132	2195045	2050	-	-	32.1	6.46	1590	1.09
AC-22	Agua del Aire	30/01/18, 15:45	cold spring	584037	2204055	2802	-	-	8.9	6.55	100.4	4.39
AC-23	Acoculco	30/01/18, 16:12	cold spring	582213	2204701	2768	-	4.44	13.1	7.37	248.2	3.43
AC-24	Pozo del Agua de Oro	30/01/18, 16:45	well	582116	2203887	2760	140		22.4	7.64	645	2.44
AC-25	Tlabuitongo	30/01/18, 17:21	cold spring	585510	2203167	2814		3.75	8.3	4.97	1660	5.91
AC-26	Balneario Agua Termal	31/01/18, 10:55	hot spring	605437	2193867	2304		-	48.3	6.25	1566	0.16
AC-27	Laguna Chignahuapan	31/01/18, 12:03	cold spring	602307	2193987	2267	-	-	18.8	7.6	351.1	6.91
AC-28	Ventoquipa	01/02/18 13:55	cold spring	569268	2215428	2228		17940	20.6	7.87	347.6	6.85
AC-29	Ventoquipa	01/02/18, 14:12	cold spring	569268	2215428	2228	-	1440	20.0	7.61	163.6	6.83
AC-30	Teroquina-Almolova	01/02/18 15:21	cold spring	571417	2214594	2221		1080	22.2	7 32	238.8	3.5
AC-31	Laguna Huevanan	01/02/18 16:04	cold spring	575256	2214418	2258		750	23.9	7 54	464.7	5.59
AC-32	Pozo Valle Verde	02/02/18, 10.45	well	564095	2220138	2172	300	360	23.6	7.31	683.5	4.66
AC-33	Pozo Prena 2	02/02/18 11:30	well	566193	2219643	2170	300	?	21.8	7.58	392.5	5 31
AC-34	Pozo Moises Rivera	02/02/18 12:00	well	566692	2218203	2166	239	900	21.0	7.65	490.5	5.23
10	Station	Date hour	Type	X(m)	V(m)	Altitude (masl)	Denth (m)	Flow (I /min)	Temp (°C)	nH	Cond (uS/cm)	DO (mg/L)
10	Deze 19 de marze	02/02/18 12:20	Type	566707	2210001	2107	102	1800	22.9	7.46	250	E 76
AC-55	Pozo 18 de marzo	02/02/18, 12.20	well	500/9/	2219901	2197	200	2600	22.0	7.40	359	5.70
AC-30	Pozo Caracontos	02/02/18, 13:00	well	565574	2221008	2152	120	3600	25	7.51	042.1	6.20
AC-37	Pozo Nanatasa	02/02/18, 13:55	well	569000	2221023	2157	170	1800	22.7	7.01	343.1	5.60
AC-30	Pozo Napateco	02/02/18, 14.27	weit	500544	2228040	2151	170	1800	26.5	7.15	331.9	5.09
AC-39	El Tapavas	02/02/18, 15:30	cold spring	580514	2206046	2805	-	-	10.5	6.77	3/3	8.21
AC-40	El Tepeyac	03/02/18, 14.20	cord spring	571799	2210082	2245	-	-	16.5	7.20	929.8	4.99
AC-41		03/02/18, 15.02	weil	572620	2217004	2240	П.К.	-	31.5	7.30	405.9	6.2
AC-42	Ojito de Agua	03/02/18, 10.43	cold spring	575395	2215459	2264		00	22.2	7.46	342.2	0.5
AC-43	Laguna Hueyapan	03/02/18, 17:36	cold spring	575310	2214861	2267	-	80	20.5	6.9	369.7	3.50
AC-44	liacomulco	03/02/18, 18:11	well	5/1763	2216309	2258	n.k.	25	17	6.9	520.7	1.87
AC-45	Los Laureles	04/02/18, 13:50	cold spring	579830	2205884	2808	-	25	16.2	6.54	81.5	6.39
AC-46	Huiztongo	04/02/18, 15:09	river	583797	2208283	2489	-	390	14.2	8.64	430.8	7.74
AC-47	Las Tires	04/02/18, 16:25	cold spring	585072	2209822	2637	-	3.3	11.1	6.11	1113	3.39
AC-48	Las Tires	04/02/18, 17:04	cold spring	585105	2209776	2588	-	-	13.3	7.42	989.5	7.22
AC-49	Coatzetzengo	05/02/18, 16:00	well			2790	n.k.		22.7	7.39	580.6	5.66
AC-50	Coatzetzengo	05/02/18, 17:38	well	568878	2203713	2623	n.k.		21.8	7.74	180.4	5.71
AC-51	Col. Ignacio Zaragoza	06/02/18, 15:40	well	568738	2241603	2181	200	2160	19.5	7.86	167.2	5.14
n.k. – not kn	iown											

Table A2_A – Concentration of chemical species determined in collected water samples (Acoculco). Data are expressed in mg/L Stable isotopic composition of Deuterium and 18-oxygen are also included (data are referred to the V-SMOW).																	
		F ⁻	CI-	Br⁻	NO ₂ -	SQ.2-	PO.3-	Ca ²⁺	Mg ²⁺	Na*	K+	NH4*	11*	В	SiOa	δD‰	δ ¹⁸ 0%
AC-05		. 11	5.9	n d	0.14	267	nd	58	11.7	23.3	10.2	2.2	0.012	65	73	-66.1	-9.4
AC-06	12	1.1	10	0.08	0.28	269	n.d.	47	13	31	16	2.2	0.012	20	76	-67.6	-9.6
AC-07	55	0.42	60	0.00	3.4	103	n.d.	37.7	10	/8.3	25.6	5.7	0.019	37	84	-74.8	-10.6
AC-07	55	0.42	7.2	n.u.	0.12	155	n.u.	76	2.1	48.3	20.0	0.51	0.005	0.09	04	-74.8	10.0
AC-08		0.32	1.5	0.05	0.13	455	n.u.	7.0	1.2	9.7	3.5	0.51	0.000	0.08	07	-00.7	10.1
AC-09	-	0.57	1.5	0.05	0.1	230	n.u.	0.9	1.2	0.7	4.0	0.59	0.001	0.05	97	-74.5	-10.8
AC-10	450	0.04	5.0	0.05	0.21	99	n.u.	20.5	2.9	15.0	9.9	0.52	0.008	0.06	00	-//	-11
AC-11	153	0.46	9.3	0.09	4.4	13	n.a.	28.5	11.3	13.2	3.6	0.11	0.003	0.04	50	-82.5	-11.3
AC-12	/3	0.31	2.4	0.06	0.19	14	n.a.	11.8	4.8	9.9	1.5	0.14	0.003	0.02	42	-/8.2	-10.7
AC-13	153	0.32	2.9	0.06	0.32	46	n.a.	32.3	15.3	9.8	1.7	0.1	0.002	0.02	47	-82.3	-11.1
AC-14	122	0.37	4.5	0.09	5.3	128	n.a.	48.5	20	25.2	0.2	0.11	0.003	0.03	70	-81.3	-10.8
AC-15	159	0.33	9	0.11	4.5	127	n.a.	58	26.2	22	3.7	0.02	0.005	0.02	68	-82	-11.3
AC-16	24	0.51	4.4	0.07	0.05	188	n.d.	43	12.4	31.2	8.7	0.13	0.015	0.07	93	-/4.3	-9.7
AC-17	15	0.52	3.9	0.02	0.26	185	n.d.	34.1	11.5	33.2	8.4	0.14	0.009	0.04	107	-79.5	-10.2
AC-18	49	0.3	1.9	0.04	0.01	7.5	n.d.	8.5	2.8	8.6	3.5	0.09	0.002	0.02	54	-83.4	-11.3
AC-19	220	0.45	5.8	0.04	0.06	10	n.d.	32.5	18.2	23.2	8.8	<0.01	0.02	0.03	83	-81	-10.8
AC-20	79	0.41	4.7	0.01	0.03	4.5	n.d.	8.5	3	19.3	5.8	0.1	0.003	0.09	20	-65.5	-8.6
AC-21	1141	1.8	16	0.09	0.04	32	n.d.	148	46.2	178	14.7	0.72	0.12	1.8	22	-63.9	-8.9
AC-22	43	0.2	1.5	0.03	1.3	6.2	n.d.	7.5	3	4.7	3.6	0.08	0.001	0.02	33	-75.9	-10.1
AC-23	127	0.52	3.3	0.03	2.3	8.5	0.22	16.6	7.1	18.2	8	0.09	0.012	0.02	81	-81	-11.2
AC-24	137	0.76	4	0.02	0.03	3	n.d.	6.3	1.8	38.6	12.8	0.6	0.038	0.05	81	-76.8	-10.7
AC-25	12	1.8	11	0.13	9.9	921	n.d.	242	57.5	37.8	5.3	n.d.	0.02	0.05	78	-80.9	-11.2
AC-26	775	1.6	100	0.34	0.55	43	n.d.	203	29	97	14.6	0.8	0.35	3	1.9	-70.6	-10.3
AC-27	98	0.3	2.4	0.02	3.2	4.3	n.d.	13.8	8.8	9.7	3.5	0.14	0.003	0.02	49	-71.5	-10.3
AC-28	90	0.46	11	0.03	9.6	7.2	n.d.	12	11	14.5	4.8	0.05	0.005	0.02	66	-78.7	-11
AC-29	120	0.4	3.3	0.03	8.8	6.9	0.16	11.8	10.7	14.1	4.7	0.14	0.003	0.02	67	-79	-11
AC-30	122	0.49	3.9	0.06	4.1	5.2	0.16	14	8.4	21.6	7.2	0.11	0.01	0.04	60	-78.7	-10.8
AC-31	116	0.62	3.5	0.04	2.6	5	n.d.	13.3	6.1	17.8	5.9	0.1	0.018	0.26	60	-81.9	-11.1
AC-32	195	0.52	5.4	0.04	2	5.9	0.24	18.6	15.5	29	9.1	0.1	0.021	0.05	69	-74.1	-10.5
AC-33	185	0.74	7.3	0.09	10	17	n.d.	30.5	12.9	29.5	9.6	0.06	0.016	0.21	53	-78	-10.5
AC-34	238	0.54	8.6	0.05	17	18	n.d.	44.3	15.7	29.6	9.8	0.09	0.014	0.23	57	-77.6	-10.5
AC-35	153	0.9	10	0.08	20	23	n.d.	25.1	11.3	31.1	9.7	0.06	0.017	0.23	57	-78.5	-10.7
AC-36	207	0.69	8	0.09	6.2	13	n.d.	27.7	14.5	35.5	10	0.04	0.027	0.14	64	-76	-10.3
AC-37	220	0.6	7.4	0.08	6.6	12	n.d.	28	16	36.1	10.7	0.09	0.024	0.16	42	-74.3	-10.3
AC-38	98	1.1	6.2	0.06	4.2	7.6	n.d.	10.7	3.1	22	6.5	0.08	0.031	0.05	62	-80.5	-11.4
AC-39	61	0.4	2.6	0.04	1.5	5.2	n.d.	7.7	2.3	10.1	4.6	0.12	0.001	0.02	74	-78.5	-11
AC-40	271	0.72	7.9	0.1	16	30	0.5	41.3	16	38.8	12.7	0.04	0.015	0.34	66	-74.2	-10.3
AC-41	110	1.4	16	0.08	0.5	13	n.d.	11.6	4.6	38.5	8.7	0.08	0.036	0.71	75	-77.5	-10.8
AC-42	112	0.77	3.6	0.04	4.7	4	0.4	13.3	6.1	22.5	7.2	0.02	0.017	0.05	64	-78.7	-11
AC-43	73	0.5	5.2	0.03	9.8	32	1	17.4	7.5	15.7	6.3	0.12	0.015	0.12	17	-76.3	-10.8
AC-44	195	0.63	17	0.06	22	46	6.5	43.8	15.3	37.9	19.5	0.06	0.004	0.28	20	-75.1	-10.3
AC-45	49	0.23	2.3	0.02	1.5	4.2	0.11	6.7	2.2	8.1	3.9	0.06	0.009	0.02	16	-84	-11.6
AC-46	143	0.42	2.1	0.02	0.42	96	0.46	53	12.3	21	4.8	0.1	0.001	0.01	54	-75.3	-10.1
AC-47	37	0.69	16	0.15	0.7	657	1.6	192	39.6	47.4	13.2	0.09	0.004	0.01	26	-74.5	-10.4
AC-48	55	0.54	18	0.18	0.68	513	n.d.	165	32.6	45.6	6.7	0.12	0.001	0.01	29	-62.3	-8.7
AC-50	122	0.75	3	0.06	6.6	5.8	0.15	13.4	7.8	22.6	6	0.14	0.007	0.03	21	-80.1	-10.8
n.d. – not d	etermined																

Table A3_A – Dissolved CO_2 calculated for collected waters in AGF									
Code	P _{CO2} (bars)	CO _{2(aq)} (mmol/L)	logFCO2						
AC-11	0.003313	0.1586	-2.482						
AC-12	0.008668	0.4603	-2.065						
AC-13	0.01074	0.5936	-1.972						
AC-14	0.01213	0.5918	-1.919						
AC-15	0.004509	0.2429	-2.348						
AC-16	0.003928	0.2184	-2.408						
AC-18	0.007416	0.4425	-2.133						
AC-19	0.009228	0.4942	-2.037						
AC-20	0.002	0.1183	-2.702						
AC-21	0.2369	7.39	-0.6274						
AC-22	0.005516	0.3159	-2.261						
AC-23	0.004128	0.2095	-2.387						
AC-24	0.002887	0.1141	-2.542						
AC-26	0.2825	6.248	-0.5508						
AC-27	0.002132	0.09257	-2.674						
AC-28	0.001102	0.04562	-2.96						
AC-29	0.002597	0.1087	-2.588						
AC-30	0.005047	0.2005	-2.299						
AC-31	0.0031	0.1179	-2.511						
AC-32	0.0083	0.3182	-2.083						
AC-33	0.004281	0.1719	-2.371						
AC-34	0.004627	0.1886	-2.337						
AC-35	0.004678	0.183	-2.332						
AC-36	0.008669	0.3375	-2.064						
AC-37	0.004817	0.189	-2.319						
AC-38	0.006183	0.2205	-2.211						
AC-39	0.002901	0.1329	-2.54						
AC-40	0.029	1.269	-1.54						
AC-41	0.004629	0.1472	-2.337						
AC-42	0.003316	0.1317	-2.482						
AC-43	0.006634	0.2755	-2.181						
AC-44	0.01627	0.7414	-1.791						
AC-45	0.007357	0.3427	-2.136						
AC-46	0.000261	0.01285	-3.586						
AC-47	0.007374	0.3959	-2.135						
AC-48	0.001473	0.0743	-2.834						
AC-50	0.00203	0.08148	-2.695						
AC-05									
AC-06	0.004409	0.195	-2.358						
AC-07	0.01653	0.7822	-1.784						
AC-08									
AC-09									
AC-10									
AC-17	0.003603	0.1941	-2.446						
AC-25	0.003255	0.1895	-2.49						

Table A4_A	– Chemical	and isotope	data for	collected gas	from natural	manifestation	is in AGF.	Data for	CO ₂ , H ₂ S,	N ₂ , Ar,	O_2 and
	vroccod in %	W/W 813C-CO	and δ^{13}		occodin %. a	nd are referred					

CH ₄ are ex	CH_4 are expressed in $\%$ V/V. 0 C-CO ₂ and 0 C-CH ₄ are expressed in $\%$ and are referred to V-PDB											
ID	DATE	TYPE	CO ₂	H_2S	N ₂	Ar	02	CH ₄	δ^{13} C-CO ₂	δ^{13} C-CH ₄		
ALC1	30/01/2018	free gas	97.2	0.13	0.78	0.011	0.009	1.83	-4.1	-33.8		
ALC2	30/01/2018	free gas	91.5	0.69	2.71	0.031	0.007	5.1	-4.1	-34		
LA1	28/01/2018	free gas	98.9	0.29	0.61	0.008	0.005	0.18	-4.5	-40.5		

ID	Date	X(m)	Y(m)	Tair (℃)	Pair (mbar)	CO ₂ Flux (g m ⁻² day
1	27/01/2018	589777	2202915	19	723	5.66
2	27/01/2018	589780	2202945	19	723	5.31
3	27/01/2018	589777	2202977	19	723	15.45
4	27/01/2018	589775	2203008	19	723	13.09
5	27/01/2018	589774	2203041	19	723	16.15
6	27/01/2018	589773	2203073	19.5	723	7.89
7	27/01/2018	589771	2203104	19.5	723	14.01
8	27/01/2018	589771	2203134	19.5	723	10.24
9	27/01/2018	589769	2203169	19.5	723	16.6
10	27/01/2018	589767	2203199	20	723	19.62
11	27/01/2018	589764	2203232	20	723	29.26
12	27/01/2018	589767	2203265	20	722	19.95
13	27/01/2018	589770	2203281	20	722	16.78
14	27/01/2018	589772	2203301	19	722	9.54
15	27/01/2018	589723	2203351	19	722	22.37
16	27/01/2018	589706	2203336	19	722	18.37
17	27/01/2018	589702	2203304	19	722	9.54
18	27/01/2018	589698	2203271	19.5	722	14.93
19	27/01/2018	589695	2203239	19.5	722	34.21
20	27/01/2018	589695	2203210	19.5	722	3.76
21	27/01/2018	589694	2203178	19.5	722	3.53
22	27/01/2018	589689	2203146	19.5	722	13.99
23	27/01/2018	589687	2203112	18.5	723	11 1
2.0	27/01/2018	589687	2203112	18.5	723	11.2
25	27/01/2018	589687	2203076	18.5	723	12.17
26	27/01/2018	589689	2203045	18.5	723	12.17
20	27/01/2018	589689	2203015	10.5	723	23.27
27	27/01/2018	589683	2202505	17	723	10.23
20	27/01/2018	589670	2202554	17	723	10.69
20	27/01/2018	580586	2202020	17.5	723	7.22
21	27/01/2018	580580	2202042	17.5	723	16 71
22	27/01/2018	50556	2202971	17.5	723	14.24
32	27/01/2018	589580	2203002	17.5	723	14.34
24	27/01/2018	589585	2203055	16.5	722	22.09
25	27/01/2018	589587	2203004	16.5	722	0.62
35	27/01/2018	589608	2203077	10.5	722	9.02
30	27/01/2018	589615	2203106	10.5	722	11.88
37	27/01/2018	589617	2203140	16.5	722	23.03
38	27/01/2018	589578	2203143	10.5	722	0.41
39	27/01/2018	589581	2203171	15	722	17.19
40	27/01/2018	589582	2203209	15	722	16./1
41	27/01/2018	589602	2203253	15	/22	16
42	27/01/2018	589602	2203286	15	/22	14.68
43	27/01/2018	589599	2203322	15	722	14.09
44	27/01/2018	589595	2203352	15	/22	15.52
45	2//01/2018	589485	2203330	15.5	722	8.58
46	27/01/2018	589480	2203296	15.5	722	0.12
47	27/01/2018	589478	2203260	15.5	722	9.53
48	27/01/2018	589484	2203218	15.5	722	18
49	27/01/2018	589483	2203195	15.5	722	3.58
50	27/01/2018	589393	2203183	15.5	722	14.54
51	27/01/2018	589393	2203219	16	723	16.92
52	27/01/2018	589385	2203251	16	723	17.04
53	27/01/2018	589394	2203283	16	723	16.08

ID	Date	X(m)	Y(m)	T (°C)	P (mbar)	$CO_2 Flux (g m^{-2} day^{-1})$
54	27/01/2018	589397	2203325	16	723	7.74
55	27/01/2018	589326	2203334	16	723	11.08
56	27/01/2018	589331	2203252	17.5	723	2.13
57	27/01/2018	589316	2203222	17.5	723	5.93
58	27/01/2018	589309	2203195	17.5	723	23.11
59	27/01/2018	589168	2203181	17.5	723	16.59
60	27/01/2018	589174	2203221	16.5	722	20.9
61	27/01/2018	589180	2203261	16.5	722	12.71
62	27/01/2018	589182	2203298	16.5	722	16.03
63	27/01/2018	589171	2203127	16.5	722	36.46
64	27/01/2018	589173	2203010	16.5	722	10.69
65	27/01/2018	589175	2203054	16.5	722	22.57
66	27/01/2018	589176	2203096	16.5	722	5 94
67	27/01/2018	589292	2203030	16.5	722	4 99
69	27/01/2018	580200	2203134	15.5	722	4.55
60	27/01/2018	580201	2203037	15.5	721	12.07
70	27/01/2018	200201	2203043	15.5	721	1 1 0
70	27/01/2018	200260	2205003	10.0	724	14.04
/1	27/01/2018	289369	2202955	15.5	/21	14.04
72	27/01/2018	589380	2202985	15.5	/21	12.26
/3	27/01/2018	589354	2203050	15.5	/21	13.69
/4	27/01/2018	589377	22030/4	15.5	/21	3.81
75	27/01/2018	589367	2203129	15.5	721	3.57
76	27/01/2018	589445	2203082	14	721	15.91
77	27/01/2018	589439	2203005	14	721	9.93
78	27/01/2018	589423	2202972	14	721	11.25
79	27/01/2018	589420	2202937	14	721	19.86
80	27/01/2018	589487	2202975	14	721	1.2
81	28/01/2018	589076	2202964	9	721	1.22
82	28/01/2018	589068	2202978	9	735	12.54
83	28/01/2018	589015	2202918	9	725	13.47
84	28/01/2018	589025	2202899	9	725	15.3
85	28/01/2018	589036	2203018	9	725	15.79
86	28/01/2018	588991	2202946	9	725	16.77
87	28/01/2018	588906	2202920	9	725	7.22
88	28/01/2018	588920	2202892	9	725	13.71
89	28/01/2018	588933	2202865	9	725	11.63
90	28/01/2018	588866	2202802	9	725	7.71
91	28/01/2018	588851	2202833	9	725	13.96
92	28/01/2018	588839	2202861	9	725	14.57
93	28/01/2018	588824	2202888	- 9	724	7.34
94	28/01/2018	588815	2202922	10	724	9.75
95	28/01/2018	588710	2202935	10	724	10.96
96	28/01/2018	588729	2202886	10	724	21.23
97	28/01/2019	5887/12	2202030	10	724	10.36
0.8	20/01/2010	500753	2202033	10	724	0 00
30 00	20/01/2018	5007.7	2202023	10	724	0.05
100 100	28/01/2018	288/6/	2202793	10	724	13.//
104	28/01/2018	5880/9	2202770	10	724	11.33
101	28/01/2018	588668	2202798	10	/24	11.94
102	28/01/2018	588654	2202826	10	724	18.64
103	28/01/2018	588641	2202856	10	724	16.32
104	28/01/2018	588631	2202887	10	724	18.03
105	28/01/2018	588625	2202911	10	724	9.99
106	28/01/2018	588607	2202934	10	724	8.53
107	28/01/2018	588545	2202864	10	724	10.6
108	28/01/2018	588499	2202829	10	724	13.16
109	28/01/2018	588562	2202835	10	724	9.75
110	28/01/2018	588577	2202823	10	724	11.09

ID	Date	X(m)	Y(m)	T (°C)	P (mbar)	CO ₂ Flux (g m ⁻² day ⁻¹)
111	28/01/2018	588615	2202814	10	724	15.96
112	28/01/2018	588628	2202783	10	724	2.8
113	28/01/2018	588600	2202740	10	724	16.81
114	28/01/2018	588610	2202704	9.5	724	15.5
115	28/01/2018	588623	2202678	9.5	724	3.42
116	28/01/2018	588707	2202670	9.5	724	8.54
117	28/01/2018	588690	2202722	9.5	724	21.97
118	28/01/2018	588773	2202744	9.5	724	14.89
119	28/01/2018	588883	2202773	9.5	724	23.19
120	28/01/2018	588904	2202742	9.5	724	30.51
121	28/01/2018	588955	2202807	9.5	724	13.42
122	28/01/2018	588937	2202834	9.5	724	12 57
122	28/01/2018	588456	2202051	10	724	4 99
123	28/01/2018	588371	2202733	10	724	13.64
125	28/01/2018	588267	2202724	10	724	0.17
125	28/01/2018	588367	2202087	10	724	22.62
120	28/01/2018	500277	2202048	10	724	23.03
120	20/01/2018	500376	2202008	10	724	17.0
120	28/01/2018	500440	2202580	10	724	17.3
129	28/01/2018	588448	22025/1	10	724	13.89
130	28/01/2018	588448	2202605	10	724	15.11
131	28/01/2018	588449	2202640	10	724	25.22
132	28/01/2018	588452	2202678	10	724	16.93
133	28/01/2018	588539	2202668	8	724	26.75
134	28/01/2018	588536	2202629	8	724	6.5
135	28/01/2018	588542	2202598	8	724	10.06
136	28/01/2018	588503	2202724	8	724	10.43
137	28/01/2018	588302	2202629	8	724	19.26
138	28/01/2018	588317	2202593	8	724	12.64
139	28/01/2018	588313	2202563	10	724	4.87
140	28/01/2018	588241	2202549	10	724	14.86
141	28/01/2018	588228	2202581	10	724	19.25
142	28/01/2018	588215	2202619	10	724	15.47
143	28/01/2018	588108	2202636	10	724	6.09
144	28/01/2018	588128	2202602	10	724	12.55
145	28/01/2018	588141	2202569	10	724	14.62
146	28/01/2018	588157	2202533	10	724	12.67
147	29/01/2018	586050	2201009	4	725	9.97
148	29/01/2018	586066	2201030	4	725	14.71
149	29/01/2018	586078	2201049	4	725	1.74
150	29/01/2018	586091	2201069	4	725	1
151	29/01/2018	586091	2201077	4	725	5.48
152	29/01/2018	586098	2201075	4	725	3.99
153	29/01/2018	586112	2201093	4	725	6.48
154	29/01/2018	586127	2201109	4	725	18.2
155	29/01/2018	586144	2201125	4	725	3.86
156	29/01/2018	586118	2201119	4	725	17.57
157	29/01/2018	586100	2201104	4	725	8.85
158	29/01/2018	586088	2201104	4	72.5	13.94
150	29/01/2019	586075	2201065	-т Д	724	1.9.7
160	29/01/2010	586062	2201005	4 A	724	21.07
161	29/01/2018	596040	2201047	4	724	5.6
101	29/01/2018	580049	2201028	4	724	0.0
102	29/01/2018	586037	2201010	4	724	11./
163	29/01/2018	586026	2201018	4	724	6.47
164	29/01/2018	586039	2201035	4	724	6.6
165	29/01/2018	586053	2201055	4	724	9.83
166	29/01/2018	586068	2201072	4	724	6.1
167	29/01/2018	586081	2201092	4	724	0.5

ID	, , Date	X(m)	Y(m)	T (°C)	P (mbar)	$CO_2 Elux (gm^{-2} dav^{-1})$
168	29/01/2018	586081	2201106	4	724	5.85
169	29/01/2018	586078	2201106	4	724	0.12
170	29/01/2018	586095	2201109	4	724	7.34
171	29/01/2018	586114	2201125	4	724	4.23
172	29/01/2018	586104	2201133	4	724	7.84
173	29/01/2018	586099	2201124	4	724	1
174	29/01/2018	586098	2201124	4	724	1.87
175	29/01/2018	586085	2201115	4	724	10.46
176	29/01/2018	586067	2201100	4	724	9.83
177	29/01/2018	586054	2201084	4	724	5.6
178	29/01/2018	586040	2201067	4	724	4.36
179	29/01/2018	586024	2201048	4	724	16.43
180	29/01/2018	586009	2201030	4	724	3.36
181	29/01/2018	587998	2202819	4	726	6.99
182	29/01/2018	588017	2202790	4	726	13.1
183	29/01/2018	588035	2202762	4	726	9.11
184	29/01/2018	588104	2202817	4	726	4.87
185	29/01/2018	588082	2202839	4	726	5.49
186	29/01/2018	588059	2202867	4	726	1.75
187	29/01/2018	588136	2202807	4	726	10.86
188	29/01/2018	588159	2202853	4	726	8.74
189	29/01/2018	588224	2202910	4	726	11 23
190	29/01/2018	587969	2202310	4	726	6.37
101	29/01/2018	587955	2202717	4	726	14.85
102	29/01/2018	587936	2202753	4	726	14.05
192	29/01/2018	587885	2202702	4	726	10.36
195	29/01/2018	587885	2202037	4	726	2 5
105	29/01/2018	587903	2202079	4	726	11.86
195	29/01/2018	587805	2202000	4	726	2
190	29/01/2018	587835	2202007	4	726	3.62
198	29/01/2018	587933	2202563	4	726	5.12
199	29/01/2018	587979	2202505	4	726	29.45
200	29/01/2018	587959	2202629	4	726	7.49
200	29/01/2018	588020	2202035	4	726	2.25
201	29/01/2018	588020	2202503	4	726	2.25
202	29/01/2018	588062	2202551	4	726	5.37
203	29/01/2018	588076	2202505	4	726	637
204	29/01/2018	587980	2202015	4	726	0.12
205	29/01/2018	587915	2202337	4	726	0.12
200	29/01/2018	587888	2202405	4	726	836
207	29/01/2018	587867	2202505	4	726	9.98
200	29/01/2018	587846	2202426	4	726	7.86
210	29/01/2018	587864	2202426	4	726	1 75
210	29/01/2018	587892	2202419	4	726	11.11
212	30/01/2018	589952	2204293		729	17.61
213	30/01/2018	589985	2204321	3	729	7.55
213	30/01/2018	590020	2204336	3	729	8.8
215	30/01/2018	590056	2201330	3	729	9.06
215	30/01/2018	590092	2204362	4	729	4.26
210	30/01/2018	590130	2201302	4	729	15.04
217	30/01/2018	590130	2204375	4	729	11 03
210	30/01/2010	500074	2204470	-+ 5	720	2 27
215	30/01/2018	590074	2204404	5	729	9.49
220	30/01/2019	520006	2204432	5	720	14.24
221	30/01/2010	580060	2204444	5	720	296
222	30/01/2010	520017	2204430	6	729	7 / 5
223	20/01/2018	500005	2204303	7	727	7.43
224	50/01/2018	266662	22043/5	/	121	/.42

ID	Date	X(m)	Y(m)	T (℃)	P (mbar)	CO ₂ Flux (g m ⁻² day ⁻¹)
225	30/01/2018	589895	2204424	7	727	7.91
226	30/01/2018	589939	2204442	7	727	12.74
227	30/01/2018	589845	2204505	7	727	4.95
228	30/01/2018	589845	2204464	7	727	5.93
229	30/01/2018	589849	2204423	6	727	1.24
230	30/01/2018	589904	2204488	5	727	6.72
231	30/01/2018	589930	2204513	5	727	8.22
232	30/01/2018	589921	2204551	5	727	7.85
233	30/01/2018	589880	2204568	5	727	7.47
234	30/01/2018	589850	2204594	5	727	5.23
235	30/01/2018	589814	2204597	5	727	7.47
236	30/01/2018	589789	2204635	5	727	8.47
237	30/01/2018	589746	2204640	5	727	5.48
238	30/01/2018	589741	2204676	5	727	11.83
239	30/01/2018	589737	2204707	5	727	6.23
240	30/01/2018	589737	2204753	5	727	11.46
241	30/01/2018	589734	2204791	8	727	19.1
242	30/01/2018	589718	2204753	8	727	12.07
243	30/01/2018	589695	2204730	8	727	10.72
244	30/01/2018	589672	2204702	8	727	4.93
245	30/01/2018	589649	2204672	8	727	10.84
246	30/01/2018	589624	2204642	8	727	10.97
247	30/01/2018	589663	2204644	8	727	8.38
248	30/01/2018	589590	2204667	8	727	21.68
249	30/01/2018	589572	2204639	5.5	727	10.94
250	30/01/2018	589606	2204699	5.5	727	13.3
251	30/01/2018	589614	2204717	5.5	727	19.27
252	30/01/2018	589588	2204740	5.5	727	16.53
253	30/01/2018	589565	2204711	5.5	727	7.46
254	30/01/2018	589544	2204684	5.5	727	17.65
255	30/01/2018	589514	2204697	5.5	727	15.91
256	30/01/2018	589539	2204733	5.5	727	12.18
257	30/01/2018	589565	2204759	5.5	727	11.81
258	30/01/2018	589544	2204792	5.5	727	18.89
259	30/01/2018	589511	2204777	5.5	727	7.83
260	30/01/2018	589477	2204755	5.5	727	9.57
261	30/01/2018	589455	2204738	5.5	727	16.53
262	30/01/2018	589645	2204729	5.5	725	14.63
263	30/01/2018	589663	2204764	5.5	725	6.57
264	30/01/2018	589677	2204793	5.5	725	6.69
265	30/01/2018	589638	2204799	5.5	725	11.16
266	30/01/2018	589617	2204775	5.5	725	8.68
267	30/01/2018	589584	2204801	5.5	725	7.81
268	30/01/2018	589608	2204827	5.5	725	3.6
269	30/01/2018	589585	2204857	5.5	725	8.68
270	30/01/2018	589550	2204841	5.5	725	19.96
271	30/01/2018	589527	2204846	5.5	725	24.3
272	30/01/2018	589551	2204872	5.5	725	12.27
273	30/01/2018	589543	2204906	5.5	725	10.04
274	30/01/2018	589501	2204892	5.5	725	15.12
275	30/01/2018	589475	2204916	5	725	12.79
276	30/01/2018	589517	2204950	5	725	6.95
277	30/01/2018	589498	2204981	5	725	7.58
278	30/01/2018	589462	2204962	5	725	11.67
279	30/01/2018	587749	2201757	4	724	27.13
280	30/01/2018	587736	2201796	4	724	26.26
281	30/01/2018	587728	2201831	4	724	15.68

ID	Date	X(m)	Y(m)	T (°C)	P (mbar)	CO ₂ Flux (g m ⁻² day ⁻¹)
282	30/01/2018	587716	2201866	4	724	23.15
283	30/01/2018	587703	2201911	4	724	6.47
284	30/01/2018	587700	2201953	4	724	14.56
285	30/01/2018	587691	2201995	4	724	11.7
286	30/01/2018	587684	2202031	4	724	1.49
287	30/01/2018	587672	2202074	4	724	11.95
288	30/01/2018	587657	2202110	4	724	15.56
289	30/01/2018	587646	2202147	4	724	4.11
290	30/01/2018	587639	2202185	4	724	8.46
291	30/01/2018	587654	2202220	2	724	8.27
292	30/01/2018	587667	2202254	2	724	19.06
293	30/01/2018	587685	2202289	2	724	4.39
294	30/01/2018	587717	2202269	2	724	8.27
295	30/01/2018	587727	2202234	2	724	15.04
296	30/01/2018	587727	2202200	2	724	10.66
297	30/01/2018	587732	2202166	2	724	5.64
298	30/01/2018	587733	2202130	2	724	2.63
299	30/01/2018	587723	2202097	2	724	9.65
300	30/01/2018	587738	2202064	2	724	12.41
301	30/01/2018	587757	2202035	2	724	12.54
302	30/01/2018	587777	2202000	2	724	13.04
303	30/01/2018	587796	2201972	2	724	7.77
304	30/01/2018	587888	2202006	2	724	7.77
305	30/01/2018	587883	2202045	2	724	12.54
306	30/01/2018	587876	2202085	2	724	10.41
307	30/01/2018	587870	2202121	2	724	4.01
308	30/01/2018	587861	2202161	2	724	6.9
309	30/01/2018	587851	2202199	2	724	15.8
310	30/01/2018	587843	2202238	2	724	21.56
311	30/01/2018	587842	2202281	1.5	724	5.9
312	30/01/2018	587838	2202318	1.5	724	15.07
313	30/01/2018	587424	2202224	19.5	726	12.17
314	01/01/2018	587411	2202191	19.5	726	8.27
315	01/01/2018	587397	2202163	19.5	726	34.28
316	01/01/2018	587384	2202141	19.5	726	14.77
317	01/01/2018	587282	2202141	19.5	726	15.84
318	01/01/2018	587324	2202087	19.5	726	29.55
319	01/01/2018	587325	2202055	17.5	726	1.19
320	01/01/2018	587407	2202035	17.5	726	9.64
321	01/01/2018	587414	2202075	17.5	726	9.64
322	01/01/2018	587228	2202095	17.5	726	24.04
323	01/01/2018	587242	2202064	17.5	726	7.85
324	01/01/2018	587248	2202032	17.5	726	8.33
325	01/01/2018	587248	2201998	17.5	729	37.4
326	01/01/2018	587245	2201963	17.5	729	16.85
327	01/01/2018	587244	2201932	17.5	729	35.49
328	01/01/2018	587244	2201900	17.5	729	34.66
329	01/01/2018	587237	2201866	17.5	729	31.79
330	01/01/2018	587234	2201833	17.5	729	22.71
331	01/01/2018	587228	2201802	17.5	729	31.19
332	01/01/2018	587224	2201768	17.5	729	30.47
333	01/01/2018	587218	2201743	17.5	729	5.26
334	01/01/2018	587136	2201764	17.5	729	2.39
335	01/01/2018	587132	2201805	17.5	729	20.67
336	01/01/2018	587123	2201840	17.5	729	19.96
337	01/01/2018	587125	2201873	17.5	729	14.7
338	01/01/2018	587135	2201904	17.5	729	12.67

339	01/01/2018	587139	2201942	17.5	729	1.2
340	01/01/2018	587144	2201978	17.5	729	5.98
341	01/01/2018	587147	2202013	17.5	729	15.18
342	01/01/2018	587154	2202042	17.5	729	4.06
343	01/01/2018	587162	2202069	19	729	19.14
344	01/01/2018	587171	2202094	19	729	31.62
345	01/01/2018	587093	2202149	19	729	24.13
346	01/01/2018	587068	2202128	19	729	12.01
347	01/01/2018	587055	2202115	19	729	14.15
348	01/01/2018	587051	2202082	19	729	17.95
349	01/01/2018	587055	2202049	19	729	9.51
350	01/01/2018	587058	2202021	19	723	20.87
351	01/01/2018	587063	2201988	19	723	10.14
352	01/01/2018	587067	2201953	19	723	16.63
353	01/01/2018	587072	2201919	19	723	11.08
354	01/01/2018	587078	2201888	19	723	7.07
355	01/01/2018	587083	2201848	19	723	13.91
356	01/01/2018	587088	2201825	19	723	19.81
357	01/01/2018	587039	2201808	19	723	7.78
358	01/01/2018	587031	2201847	19	723	12.38
359	01/01/2018	587014	2201887	19	723	6.72
360	01/01/2018	587011	2201921	19	723	8.73
361	01/01/2018	587009	2201950	19	723	14.39
362	01/01/2018	587001	2201985	19	723	24.29
363	01/01/2018	586994	2202017	20	723	19 39
364	01/01/2018	586990	2202050	20	723	22.8
365	01/01/2018	586991	2202085	20	723	9.64
366	01/01/2018	586983	2202000	20	723	19.39
367	01/01/2018	586979	2202127	20	723	32.67
368	01/01/2018	586979	2202133	20	723	14.92
260	01/01/2018	506000	2202100	10	725	15.51
270	01/01/2018	50607/	2202207	19	720	19.04
271	01/01/2018	506050	2202102	19	720	16.54
371	01/01/2018	500039	2202135	19	725	10.55
372	01/01/2018	586845	2202125	19	725	25.07
373	01/01/2018	586828	2202096	19	725	25.07
374	01/01/2018	586810	2202064	19	725	20.93
375	01/01/2018	586804	2202031	19	/26	13.5
376	01/01/2018	586792	2201997	19	/26	16.22
3//	01/01/2018	586780	2201970	19	/26	17.76
378	01/01/2018	586766	2201994	19	726	32.32
379	01/01/2018	586754	2202028	19	726	17.4
380	01/01/2018	586693	2202040	19	726	16.22
381	01/01/2018	586688	2202068	19	726	12.67
382	01/01/2018	586680	2202103	19	726	4.74
383	01/01/2018	586670	2202137	19	726	11.6
384	01/01/2018	586661	2202171	19	726	2.6
385	01/01/2018	586654	2202207	17.5	726	19.99
386	01/01/2018	586647	2202231	17.5	726	24.64
387	01/01/2018	586753	2202228	17.5	726	12.38
388	01/01/2018	586753	2202196	17.5	726	10
389	01/01/2018	586751	2202165	16	725	12.66
390	01/01/2018	586754	2202131	16	726	15.55
391	01/01/2018	586754	2202097	16	726	9.21
392	01/01/2018	586749	2202055	16	726	21.05
393	02/02/2018	589796	2203091	13.5	728	6.53
394	02/02/2018	589837	2203088	13.5	728	10.29
395	02/02/2018	589869	2203104	13.5	728	13.92

ID	Date	X(m)	Y(m)	⊤ (°C)	P (mbar)	CO ₂ Flux (g m ⁻² day ⁻¹)
396	02/02/2018	589938	2203096	13.5	728	20.57
397	02/02/2018	589970	2203118	13.5	727	25.38
398	02/02/2018	589995	2203098	13.5	727	21.75
399	02/02/2018	590012	2203142	13.5	727	27.91
400	02/02/2018	589953	2203146	13.5	727	16.8
401	02/02/2018	589918	2203144	13.5	727	10.15
402	02/02/2018	589890	2203165	13.5	727	14.5
403	02/02/2018	589853	2203197	13.5	727	13.29
404	02/02/2018	589970	2203164	13.5	726	15.93
405	02/02/2018	590000	2203176	13.5	726	9.65
406	02/02/2018	590039	2203144	13.5	726	48.87
407	02/02/2018	590060	2203153	13.5	726	21.96
408	02/02/2018	590074	2203153	13.5	726	15.69
409	02/02/2018	590106	2203183	13.5	726	26.55
410	02/02/2018	590138	2203204	13.5	726	25.1
411	02/02/2018	590151	2203192	13.5	726	14.48
412	02/02/2018	590185	2203191	13.5	729	12.12
413	02/02/2018	590217	2203202	11.5	729	5.12
414	02/02/2018	590205	2203226	11.5	726	12.15
415	02/02/2018	590187	2203227	11.5	726	9.36
416	02/02/2018	590188	2203217	11.5	726	1.22
417	02/02/2018	590163	2203221	11.5	726	21.39
418	02/02/2018	590149	2203200	11.5	726	5.1